964 resultados para transcriptional regulatory networks
Resumo:
Wireless adhoc networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem - the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node. In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels, where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information (CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a c- - orresponding factored class of control poli.
Resumo:
Background The genome of a wide variety of prokaryotes contains the luxS gene homologue, which encodes for the protein S-ribosylhomocysteinelyase (LuxS). This protein is responsible for the production of the quorum sensing molecule, AI-2 and has been implicated in a variety of functions such as flagellar motility, metabolic regulation, toxin production and even in pathogenicity. A high structural similarity is present in the LuxS structures determined from a few species. In this study, we have modelled the structures from several other species and have investigated their dimer interfaces. We have attempted to correlate the interface features of LuxS with the phenotypic nature of the organisms. Results The protein structure networks (PSN) are constructed and graph theoretical analysis is performed on the structures obtained from X-ray crystallography and on the modelled ones. The interfaces, which are known to contain the active site, are characterized from the PSNs of these homodimeric proteins. The key features presented by the protein interfaces are investigated for the classification of the proteins in relation to their function. From our analysis, structural interface motifs are identified for each class in our dataset, which showed distinctly different pattern at the interface of LuxS for the probiotics and some extremophiles. Our analysis also reveals potential sites of mutation and geometric patterns at the interface that was not evident from conventional sequence alignment studies. Conclusion The structure network approach employed in this study for the analysis of dimeric interfaces in LuxS has brought out certain structural details at the side-chain interaction level, which were elusive from the conventional structure comparison methods. The results from this study provide a better understanding of the relation between the luxS gene and its functional role in the prokaryotes. This study also makes it possible to explore the potential direction towards the design of inhibitors of LuxS and thus towards a wide range of antimicrobials.
Resumo:
Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.
Resumo:
Distributed space time coding for wireless relay networks when the source, the destination and the relays have multiple antennas have been studied by Jing and Hassibi. In this set-up, the transmit and the receive signals at different antennas of the same relay are processed and designed independently, even though the antennas are colocated. In this paper, a wireless relay network with single antenna at the source and the destination and two antennas at each of the R relays is considered. A new class of distributed space time block codes called Co-ordinate Interleaved Distributed Space-Time Codes (CIDSTC) are introduced where, in the first phase, the source transmits a T-length complex vector to all the relays;and in the second phase, at each relay, the in-phase and quadrature component vectors of the received complex vectors at the two antennas are interleaved and processed before forwarding them to the destination. Compared to the scheme proposed by Jing-Hassibi, for T >= 4R, while providing the same asymptotic diversity order of 2R, CIDSTC scheme is shown to provide asymptotic coding gain with the cost of negligible increase in the processing complexity at the relays. However, for moderate and large values of P, CIDSTC scheme is shown to provide more diversity than that of the scheme proposed by Jing-Hassibi. CIDSTCs are shown to be fully diverse provided the information symbols take value from an appropriate multidimensional signal set.
Resumo:
A relay network with N relays and a single source-destination pair is called a partially-coherent relay channel (PCRC) if the destination has perfect channel state information (CSI) of all the channels and the relays have only the phase information of the source-to-relay channels. In this paper, first, a new set of necessary and sufficient conditions for a space-time block code (STBC) to be single-symbol decodable (SSD) for colocated multiple antenna communication is obtained. Then, this is extended to a set of necessary and sufficient conditions for a distributed STBC (DSTBC) to be SSD for. a PCRC. Using this, several SSD DSTBCs for PCRC are identified. It is proved that even if a SSD STBC for a co-located MIMO channel does not satisfy the additional conditions for the code to be SSD for a PCRC, single-symbol decoding of it in a PCRC gives full-diversity and only coding gain is lost. It is shown that when a DSTBC is SSD for a PCRC, then arbitrary coordinate interleaving of the in-phase and quadrature-phase components of the variables does not disturb its SSD property for PCRC. Finally, it is shown that the possibility of channel phase compensation operation at the relay nodes using partial CSI at the relays increases the possible rate of SSD DSTBCs from (2)/(N) when the relays do not have CSI to(1)/(2), which is independent of N.
Resumo:
Two genes encoding polyphenol oxidase (PPO) were isolated from pineapple (Ananas comosus[L.] Merr. cv. Smooth Cayenne). Sequence analyses showed that both contained a single intron and encoded typical chloroplast-localized PPO proteins, the sequences of which corresponded to two pineapple PPO cDNAs, PINPPO1 and PINPPO2, recently described by Stewart et al. (2001). Southern blot analyses suggested that pineapple contained only two PPO genes. Analysis of expression of PINPPO1 promoter GUS fusion constructs showed this promoter had a low basal activity and was cold- and wound-inducible, consistent with known mRNA expression profiles. Striking homologies to gibberellin response complexes (GARC) were observed in sequences of both the PINPPO1 and PINPPO2 promoters. Transient assays in mature pineapple fruit and stable expression in transgenic tobacco showed that PINPPO1 promoter-GUS fusions were indeed gibberellin (GA) responsive. A role for the element within the putative GARCs in mediating GA-responsiveness of the PINPPO1 promoter was confirmed by mutational analysis. PINPPO2 was also shown to be GA-responsive by RT-PCR analysis. Mutant PINPPO1 promoter-GUS fusion constructs, which were no longer GA-inducible, showed a delayed response to cold induction in pineapple fruit in transient assays, suggesting a role for GA in blackheart development. This was supported by observations that exogenous GA3 treatment induced blackheart in the absence of chilling. Sequences showing homology to GARCs are also present in some PPO promoters in tomato, suggesting that GA regulates PPO expression in diverse species.
Resumo:
Interdependence is a central concept in systems and organizations, yet our methods for measuring it are not well developed. Here, we report on a novel method for transforming digital trace data into networks of events that can be used to visualize and measure interdependence. The edges in the network represent sequential flow and the vertices represent actors, actions and artifacts. We refer to this representation as an affordance network. As with conventional approaches such as process mining, our method uses input from a stream of time-stamped occurrences, but the representation is simpler and more appropriate for exploration and theory building. As digital trace data becomes more widely available, this method may become more useful in information systems research and practice. Like a thermometer, it helps us measure a basic property of a system that would otherwise be difficult to see.
Resumo:
For many complex natural resources problems, planning and management efforts involve groups of organizations working collaboratively through networks (Agranoff, 2007; Booher & Innes, 2010). These networks sometimes involve formal roles and relationships, but often include informal elements (Edelenbos & Klijn, 2007). All of these roles and relationships undergo change in response to changes in personnel, priorities and policy. There has been considerable focus in the planning and public policy literature on describing and characterizing these networks (Mandell & Keast, 2008; Provan & Kenis, 2007). However, there has been far less research assessing how networks change and adjust in response to policy and political change. In the Australian state of Queensland, Natural Resource Management (NRM) organizations were created as lead organizations to address land and water management issues on a regional basis with Commonwealth funding and state support. In 2012, a change in state government signaled a dramatic change in policy that resulted in a significant reduction of state support and commitment. In response to this change, NRM organizations have had to adapt their networks and relationships. In this study, we examine the issues of network relationships, capacity and changing relationships over time using written surveys and focus groups with NRM CEOs, managers and planners (note: data collection events scheduled for March and April 2015). The research team will meet with each of these three groups separately, conduct an in-person survey followed by a facilitated focus group discussion. The NRM participant focus groups will also be subdivided by region, which correlates with capacity (inland/low capacity; coastal/high capacity). The findings focus on how changes in state government commitment have affected NRM networks and their relationships with state agencies. We also examine how these changes vary according to the level within the organization and the capacity of the organization. We hypothesize that: (1) NRM organizations have struggled to maintain capacity in the wake of state agency withdrawal of support; (2) NRM organizations with the lowest capacity have been most adversely affected, while some high capacity NRM organizations may have become more resilient as they have sought out other partners; (3) Network relationships at the highest levels of the organization have been affected the most by state policy change; (4) NRM relationships at the lowest levels of the organizations have changed the least, as formal relationships are replaced by informal networks and relationships.
Resumo:
tRNA synthetases (aaRS) are enzymes crucial in the translation of genetic code. The enzyme accylates the acceptor stem of tRNA by the congnate amino acid bound at the active site, when the anti-codon is recognized by the anti-codon site of aaRS. In a typical aaRS, the distance between the anti-codon region and the amino accylation site is approximately 70 Å. We have investigated this allosteric phenomenon at molecular level by MD simulations followed by the analysis of protein structure networks (PSN) of non-covalent interactions. Specifically, we have generated conformational ensembles by performing MD simulations on different liganded states of methionyl tRNA synthetase (MetRS) from Escherichia coli and tryptophenyl tRNA synthetase (TrpRS) from Human. The correlated residues during the MD simulations are identified by cross correlation maps. We have identified the amino acids connecting the correlated residues by the shortest path between the two selected members of the PSN. The frequencies of paths have been evaluated from the MD snapshots[1]. The conformational populations in different liganded states of the protein have been beautifully captured in terms of network parameters such as hubs, cliques and communities[2]. These parameters have been associated with the rigidity and plasticity of the protein conformations and can be associated with free energy landscape. A comparison of allosteric communication in MetRS and TrpRS [3] elucidated in this study highlights diverse means adopted by different enzymes to perform a similar function. The computational method described for these two enzymes can be applied to the investigation of allostery in other systems.
Resumo:
Most plant disease resistance (R) genes encode proteins with a nucleotide binding site and leucine-rich repeat structure (NBS-LRR). In this study, degenerate primers were used to amplify genomic NBS-type sequences from wild banana (Musa acuminata ssp. malaccensis) plants resistant to the fungal pathogen Fusarium oxysporum formae specialis (f. sp.) cubense (FOC) race 4. Five different classes of NBS-type sequences were identified and designated as resistance gene candidates (RGCs). The deduced amino acid sequences of the RGCs revealed the presence of motifs characteristic of the majority of known plant NBS-LRR resistance genes. Structural and phylogenetic analyses grouped the banana RGCs within the non-TIR (homology to Toll/interleukin-1 receptors) subclass of NBS sequences. Southern hybridization showed that each banana RGC is present in low copy number. The expression of the RGCs was assessed by RT-PCR in leaf and root tissues of plants resistant or susceptible to FOC race 4. RGC1, 3 and 5 showed a constitutive expression profile in both resistant and susceptible plants whereas no expression was detected for RGC4. Interestingly, RGC2 expression was found to be associated only to FOC race 4 resistant lines. This finding could assist in the identification of a FOC race 4 resistance gene.
Resumo:
Systems level modelling and simulations of biological processes are proving to be invaluable in obtaining a quantitative and dynamic perspective of various aspects of cellular function. In particular, constraint-based analyses of metabolic networks have gained considerable popularity for simulating cellular metabolism, of which flux balance analysis (FBA), is most widely used. Unlike mechanistic simulations that depend on accurate kinetic data, which are scarcely available, FBA is based on the principle of conservation of mass in a network, which utilizes the stoichiometric matrix and a biologically relevant objective function to identify optimal reaction flux distributions. FBA has been used to analyse genome-scale reconstructions of several organisms; it has also been used to analyse the effect of perturbations, such as gene deletions or drug inhibitions in silico. This article reviews the usefulness of FBA as a tool for gaining biological insights, advances in methodology enabling integration of regulatory information and thermodynamic constraints, and finally addresses the challenges that lie ahead. Various use scenarios and biological insights obtained from FBA, and applications in fields such metabolic engineering and drug target identification, are also discussed. Genome-scale constraint-based models have an immense potential for building and testing hypotheses, as well as to guide experimentation.
Resumo:
This study addresses four issues concerning technological product innovations. First, the nature of the very early phases or "embryonic stages" of technological innovation is addressed. Second, this study analyzes why and by what means people initiate innovation processes outside the technological community and the field of expertise of the established industry. In other words, this study addresses the initiation of innovation that occurs without the expertise of established organizations, such as technology firms, professional societies and research institutes operating in the technological field under consideration. Third, the significance of interorganizational learning processes for technological innovation is dealt with. Fourth, this consideration is supplemented by considering how network collaboration and learning change when formalized product development work and the commercialization of innovation advance. These issues are addressed through the empirical analysis of the following three product innovations: Benecol margarine, the Nordic Mobile Telephone system (NMT) and the ProWellness Diabetes Management System (PDMS). This study utilizes the theoretical insights of cultural-historical activity theory on the development of human activities and learning. Activity-theoretical conceptualizations are used in the critical assessment and advancement of the concept of networks of learning. This concept was originally proposed by the research group of organizational scientist Walter Powell. A network of learning refers to the interorganizational collaboration that pools resources, ideas and know-how without market-based or hierarchical relations. The concept of an activity system is used in defining the nodes of the networks of learning. Network collaboration and learning are analyzed with regard to the shared object of development work. According to this study, enduring dilemmas and tensions in activity explain the participants' motives for carrying out actions that lead to novel product concepts in the early phases of technological innovation. These actions comprise the initiation of development work outside the relevant fields of expertise and collaboration and learning across fields of expertise in the absence of market-based or hierarchical relations. These networks of learning are fragile and impermanent. This study suggests that the significance of networks of learning across fields of expertise becomes more and more crucial for innovation activities.
Resumo:
On 30 March 2015 the Australian Federal Government launched its "Re-Think" initiative with the objective of achieving a better tax system which delivers taxes that are lower, simpler and fairer. The discussion paper released as part of the "Re:think" initiative is designed to start a national conversation on tax reform. However, inquiries into Australia's future tax system, subsequent reforms and the introduction of new taxes are nothing new. Unfortunately, recent history also demonstrates that reform initiatives arising from reviews of the Australian tax system are often deemed a failure. The most prominent of these failures in recent times is the Minerals Resource Rent Tax (MRRT), which lasted a mere 16 months before its announced repeal. Using the established theoretic framework of regulatory capture to interpret publically observable data, the purpose of this article is to explain the failure of this arguably sound tax. It concludes that the MRRT legislation itself, through the capture by the mining companies, provided internal subsidization in the form of reduced tax and minimal or no rents. In doing so, it offers an opportunity to understand and learn from past experiences to ensure that recommendations coming out of the Re:think initiative do not suffer the same fate.
Resumo:
This thesis is a study of Chinese One Child Generation's digital and social sharing. It examines urban youth grassroots communities, including an urban farmers' community and volunteers in educational camps. These case studies explain the emergence of 'sharism' in reaction to the growing risks in China, such as food safety and environmental degradation emanating from China's rapid economic development, and growing urbanism, globalisation, and consumerism. The new forms of 'sharism' are linked to guanxi (social relations) and connected youth communities, which are made possible by increasing accessibility to digital and networked technologies.
Resumo:
Structural and rheological features of a series of molecular hydrogels formed by synthetic bile salt analogues have been scrutinized. Among seven gelators, two are neutral compounds, while the others are cationic systems among which one is a tripodal steroid derivative. Despite the fact that the chemical structures are closely related, the variety of physical characteristics is extremely large in the structures of the connected fibers (either plain cylinders or ribbons), in the dynamical modes for stress relaxation of the associated SAFINs, in the scaling laws of the shear elasticity (typical of either cellular solids or fractal floc-like assemblies), in the micron-scale texture and the distribution of ordered domains (spherulites, crystallites) embedded in a random mesh, in the type of nodal zones (either crystalline-like, fiber entanglements, or bundles), in the evolution of the distribution and morphology of fibers and nodes, and in the sensitivity to added salt. SANS appears to be a suitable technique to infer all geometrical parameters defining the fibers, their interaction modes, and the volume fraction of nodes in a SAFIN. The tripodal system is particularly singular in the series and exhibits viscosity overshoots at the startup of shear flows, an “umbrella-like” molecular packing mode involving three molecules per cross section of fiber, and scattering correlation peaks revealing the ordering and overlap of 1d self-assembled polyelectrolyte species.