991 resultados para theoretical Chemistry
Resumo:
In the field of diagnostics of rolling element bearings, the development of sophisticated techniques, such as Spectral Kurtosis and 2nd Order Cyclostationarity, extended the capability of expert users to identify not only the presence, but also the location of the damage in the bearing. Most of the signal-analysis methods, as the ones previously mentioned, result in a spectrum-like diagram that presents line frequencies or peaks in the neighbourhood of some theoretical characteristic frequencies, in case of damage. These frequencies depend only on damage position, bearing geometry and rotational speed. The major improvement in this field would be the development of algorithms with high degree of automation. This paper aims at this important objective, by discussing for the first time how these peaks can draw away from the theoretical expected frequencies as a function of different working conditions, i.e. speed, torque and lubrication. After providing a brief description of the peak-patterns associated with each type of damage, this paper shows the typical magnitudes of the deviations from the theoretical expected frequencies. The last part of the study presents some remarks about increasing the reliability of the automatic algorithm. The research is based on experimental data obtained by using artificially damaged bearings installed in a gearbox.
Resumo:
Development of design guides to estimate the difference in speech interference level due to road traffic noise between a reference position and balcony position or façade position is explored. A previously established and validated theoretical model incorporating direct, specular and diffuse reflection paths is used to create a database of results across a large number of scenarios. Nine balcony types with variable acoustic treatments are assessed to provide acoustic design guidance on optimised selection of balcony acoustic treatments based on location and street type. In total, the results database contains 9720 scenarios on which multivariate linear regression is conducted in order to derive an appropriate design guide equation. The best fit regression derived is a multivariable linear equation including modified exponential equations on each of nine deciding variables, (1) diffraction path difference, (2) ratio of total specular energy to direct energy, (3) distance loss between reference position and receiver position, (4) distance from source to balcony façade, (5) height of balcony floor above street, (6) balcony depth, (7) height of opposite buildings, (8) diffusion coefficient of buildings, and; (9) balcony average absorption. Overall, the regression correlation coefficient, R2, is 0.89 with 95% confidence standard error of ±3.4 dB.
Resumo:
Tissue engineering focuses on the repair and regeneration of tissues through the use of biodegradable scaffold systems that structurally support regions of injury whilst recruiting and/or stimulating cell populations to rebuild the target tissue. Within bone tissue engineering, the effects of scaffold architecture on cellular response have not been conclusively characterized in a controlled-density environment. We present a theoretical and practical assessment of the effects of polycaprolactone (PCL) scaffold architectural modifications on mechanical and flow characteristics as well as MC3T3-E1 preosteoblast cellular response in an in vitro static plate and custom-designed perfusion bioreactor model. Four scaffold architectures were contrasted, which varied in inter-layer lay-down angle and offset between layers, whilst maintaining a structural porosity of 60 ± 5%. We established that as layer angle was decreased (90° vs. 60°) and offset was introduced (0 vs. 0.5 between layers), structural stiffness, yield stress, strength, pore size and permeability decreased, whilst computational fluid dynamics-modeled wall shear stress was increased. Most significant effects were noted with layer offset. Seeding efficiencies in static culture were also dramatically increased due to offset (~45% to ~86%), with static culture exhibiting a much higher seeding efficiency than perfusion culture. Scaffold architecture had minimal effect on cell response in static culture. However, architecture influenced osteogenic differentiation in perfusion culture, likely by modifying the microfluidic environment.
Resumo:
Two poems in journal Axon. 2013 Issue 4.
Resumo:
Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2. This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2-capture phenomenon is considered.
Resumo:
A series of aza-boron-diquinomethene (aza-BODIQU) complexes with different aryl-substituents (B1–B6) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. All complexes exhibit strong 1π–π* absorption bands and intense fluorescent emission bands in the visible spectral region at room temperature. The fluorescence spectra in solution show the mirror image features of the S0→S1 absorption bands, which can be assigned to the 1π–π*/1ICT (intramolecular charge transfer) emitting states. Except for B6, all complexes exhibit high photoluminescence quantum yields (ΦPL = 0.47–0.93). The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these aza-BODIQUs can be tuned by the appended aryl-substituents, which would be useful for rational design of boron–fluorine complexes with high emission quantum yield for organic light-emitting applications.
Resumo:
Capturing and sequestering carbon dioxide (CO2) can provide a route to partial mitigation of climate change associated with anthropogenic CO2 emissions. Here we report a comprehensive theoretical study of CO2 adsorption on two phases of boron, α-B12 and γ-B28. The theoretical results demonstrate that the electron deficient boron materials, such as α-B12 and γ-B28, can bond strongly with CO2 due to Lewis acid-base interactions because the electron density is higher on their surfaces. In order to evaluate the capacity of these boron materials for CO2 capture, we also performed calculations with various degrees of CO2 coverage. The computational results indicate CO2 capture on the boron phases is a kinetically and thermodynamically feasible process, and therefore from this perspective these boron materials are predicted to be good candidates for CO2 capture.
Resumo:
Nanomaterials are prone to influence by chemical adsorption because of their large surface to volume ratios. This enables sensitive detection of adsorbed chemical species which, in turn, can tune the property of the host material. Recent studies discovered that single and multi-layer molybdenum disulfide (MoS2) films are ultra-sensitive to several important environmental molecules. Here we report new findings from ab inito calculations that reveal substantially enhanced adsorption of NO and NH3 on strained monolayer MoS2 with significant impact on the properties of the adsorbates and the MoS2 layer. The magnetic moment of adsorbed NO can be tuned between 0 and 1 μB; strain also induces an electronic phase transition between half-metal and metal. Adsorption of NH3 weakens the MoS2 layer considerably, which explains the large discrepancy between the experimentally measured strength and breaking strain of MoS2 films and previous theoretical predictions. On the other hand, adsorption of NO2, CO, and CO2 is insensitive to the strain condition in the MoS2 layer. This contrasting behavior allows sensitive strain engineering of selective chemical adsorption on MoS2 with effective tuning of mechanical, electronic, and magnetic properties. These results suggest new design strategies for constructing MoS2-based ultrahigh-sensitivity nanoscale sensors and electromechanical devices.
Resumo:
Scientific visualisations such as computer-based animations and simulations are increasingly a feature of high school science instruction. Visualisations are adopted enthusiastically by teachers and embraced by students, and there is good evidence that they are popular and well received. There is limited evidence, however, of how effective they are in enabling students to learn key scientific concepts. This paper reports the results of a quantitative study conducted in Australian chemistry classrooms. The visualisations chosen were from free online sources, intended to model the ways in which classroom teachers use visualisations, but were found to have serious flaws for conceptual learning. There were also challenges in the degree of interactivity available to students using the visualisations. Within these limitations, no significant difference was found for teaching with and without these visualisations. Further study using better designed visualisations and with explicit attention to the pedagogy surrounding the visualisations will be required to gather high quality evidence of the effectiveness of visualisations for conceptual development.
Resumo:
Whole-body cryotherapy (WBC) involves short exposures to air temperatures below –100°C. WBC is increasingly accessible to athletes, and is purported to enhance recovery after exercise and facilitate rehabilitation postinjury. Our objective was to review the efficacy and effectiveness of WBC using empirical evidence from controlled trials. We found ten relevant reports; the majority were based on small numbers of active athletes aged less than 35 years. Although WBC produces a large temperature gradient for tissue cooling, the relatively poor thermal conductivity of air prevents significant subcutaneous and core body cooling. There is weak evidence from controlled studies that WBC enhances antioxidant capacity and parasympathetic reactivation, and alters inflammatory pathways relevant to sports recovery. A series of small randomized studies found WBC offers improvements in subjective recovery and muscle soreness following metabolic or mechanical overload, but little benefit towards functional recovery. There is evidence from one study only that WBC may assist rehabilitation for adhesive capsulitis of the shoulder. There were no adverse events associated with WBC; however, studies did not seem to undertake active surveillance of predefined adverse events. Until further research is available, athletes should remain cognizant that less expensive modes of cryotherapy, such as local ice-pack application or cold-water immersion, offer comparable physiological and clinical effects to WBC.
Resumo:
Indigenous media around the globe have expanded considerably in recent years, a process that has also led to an increase in the number of Indigenous news organisations. Yet, research into Indigenous news and journalism is still rare, with mostly individual case studies having been undertaken in different parts of the globe. Drawing on existing research gathered from a variety of global contexts, this paper theorises five main dimensions which can help us think about and empirically examine Indigenous journalism culture. They include: the empowerment role of Indigenous journalism; the ability to offer a counter-narrative to mainstream media reporting; journalism’s role in language revitalisation; reporting through a culturally appropriate framework; and the watchdog function of Indigenous journalism. These dimensions are discussed in some detail, in an attempt to guide future studies into the structures, roles, practices and products of Indigenous journalism across the globe.
Resumo:
Attempts by universities to provide an improved learning environment to students have led to an increase in team-teaching approaches in higher education. While the definitions of team-teaching differ slightly, the benefits of team-teaching have been cited widely in the higher education literature. By tapping the specialist knowledge of a variety of staff members, students are exposed to current and emerging knowledge in different fields and topic areas; students are also able to understand concepts from a variety of viewpoints. However, while there is some evidence of the usefulness of team-teaching, there is patchy empirical support to underpin how well students appreciate and adapt to team-teaching approaches. This paper reports on the team-teaching approaches adopted in the delivery of an introductory journalism and communication course at the University of Queensland. The success of the approaches is examined against the background of quantitative and qualitative data. The study found that team-teaching is generally very well received by undergraduate students because they value the diverse expertise and teaching styles they are exposed to. Despite the positive feedback, students also complained about problems of continuity and cohesiveness.
Resumo:
Density functional calculations of the electronic band structure for superconducting and semi-conducting metal hexaborides are compared using a consistent suite of assumptions and with emphasis on the physical implications of computed models. Spin polarization enhances mathematical accuracy of the functional approximations and adds significant physical meaning to model interpretation. For YB6 and LaB6, differences in alpha and beta projections occur near the Fermi energy. These differences are pronounced for superconducting hexaborides but do not occur for other metal hexaborides.
Resumo:
In most radicals the singly occupied molecular orbital (SOMO) is the highest-energy occupied molecular orbital (HOMO); however, in a small number of reported compounds this is not the case. In the present work we expand significantly the scope of this phenomenon, known as SOMO-HOMO energy-level conversion, by showing that it occurs in virtually any distonic radical anion that contains a sufficiently stabilized radical (aminoxyl, peroxyl, aminyl) non-pi-conjugated with a negative charge (carboxylate, phosphate, sulfate). Moreover, regular orbital order is restored on protonation of the anionic fragment, and hence the orbital configuration can be switched by pH. Most importantly, our theoretical and experimental results reveal a dramatically higher radical stability and proton acidity of such distonic radical anions. Changing radical stability by 3-4 orders of magnitude using pH-induced orbital conversion opens a variety of attractive industrial applications, including pH-switchable nitroxide-mediated polymerization, and it might be exploited in nature.
Resumo:
Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC16:0/18:1) and 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (PC18:1/16:0), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, \[PC + PDPA - H](-). Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating \[PC - CH3](-). Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of \[PC - CH3](-) suggest favorable cleavage at the sn-2 position over the sn-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry. Grant Number ARC/CE0561607, ARC/DP120102922