965 resultados para termografia infravermelho
Resumo:
Ao submeter uma solução aquosa de 5-nitro-2-furaldeído (NFA) a fotólise com impulsos de luz de curta duração (produzidos por um laser de estado sólido de Nd-YAG) origina-se uma absorvância (transiente) de curta duração que é atribuída à absorção de luz pelo NFA no estado tripleto mais baixo (3NFA*). O espectro desta absorção de luz apresenta um λmax = 475 ± 5 nm, que se mostrou ser insensível à polaridade do solvente. Em solução aquosa, a absorção do 3NFA* decai para uma absorção transiente de tempo de vida mais longo e que, medida em tempos diferentes (depois do fim do impulso), revelou ser devida a um radical furiloxilo (a de λmax ≈ 375 nm) e ao anião radical NFA•‒ (a de λmax ≈ 400 nm). Estes dois radicais foram gerados independentemente um do outro, o que permitiu confirmar a atribuição daquela absorção de longo tempo de vida (obtida na fotólise de NFA em água) aos radicais furiloxilo e anião radical do NFA. O tempo de vida (τ) do 3NFA* revelou uma dependência em relação à natureza do solvente e à concentração de NFA no estado fundamental. Da propensão do 3NFA* para abstrair um átomo de hidrogénio de solventes (com átomos de H abstraíveis) concluiu-se a natureza (n, π*) do estado tripleto de menor energia do NFA. A dependência de τ em relação à concentração de NFA (no estado fundamental) forneceu evidência cinética em favor da formação de um excímero tripleto que supostamente se dissocia em iões radicais (catião e anião) como é proposto no mecanismo de auto-supressão do 3NFA* por transferência de electrão. O efeito da acididade sobre τ corrobora o mecanismo de auto-supressão por transferência de electrão. A análise cromatográfica e espectroscópica da solução fotolisada de NFA em água permitiu identificar a 5-hidroximetileno-2(5H)-furanona, o ião nitrito e uma substância desconhecida de tR 3.69 minutos como os fotoprodutos maioritários. Apresenta-se evidência conclusiva de que a 5-hidroximetileno-2(5H)-furanona provém do radical furiloxilo. Mostra-se que a substância desconhecida também pode ser obtida na foto-redução de NFA em propan-2-ol e na redução química de NFA por Fe (s) em água (em ambas, conjuntamente com produção de 5-amino-2-furaldeído). Com base na análise por espectroscopia de absorção de RMN de 1H e de 13C (com 2-D HMQC) e vibracional por FT no infravermelho médio, discute-se a possível estrutura da substância de tR 3.69 minutos obtida como um produto da foto-redução de NFA em água. Experiências de sensibilização e supressão do 3NFA* permitiram obter a energia de excitação do estado tripleto como 238 ± 2 kJ mol-1 o que, conjuntamente com o potencial de redução monoelectrónica (E71) do NFA fornece E71 (3NFA* / NFA•‒) = 2.26 V vs. SHE para o potencial de redução monoelectrónica do 3NFA* em solução aquosa neutra. Mostra-se que os aniões inorgânicos (usados como nucleófilos) são mono-oxidados pelo 3NFA* (como é indicado pela observação de NFA•‒ e do radical inorgânico) com constantes de velocidade de segunda-ordem (
Resumo:
Ceramic pigments that own mainly the spinel structure AB2O4 are becoming a matter of great scientific and technological interest due to the ability of accommodate different cations in its structure, allowing different dopings and thus obtaining different colors. Studies on ceramic pigments currently are being directed to the development of stable and pigments obtained at low temperatures and with greater reproducibility. This work aims at the use of inorganic pigments for applications in ceramic tiles, investigating the influence of doping and calcination temperature on the coloring pigments and ceramic glazes. the based pigments of CoCr2O4, CoAl2O4, Co0,8Zn0,2Cr2O4 and Co0,8Zn0,2Al2O4 were synthesized by a chemical route using commercial gelatin as organic precursor. The materials were characterized by thermogravimetric analysis (TG), X-ray diffraction (XRD), infrared spectroscopy (FTIR) spectroscopy scanning electron microscopy (SEM) in the UVVisible region and colorimetry. The results confirmed the feasibility of synthesis used, the route presented pigments crystal structures and the desired phases were obtained from 500 °C with increased crystallinity and the crystallite size. The pigments have hues ranging from green to violet according to their doping and calcination temperatures.
Resumo:
Biodegradable microspheres used as controlled release systems are important in pharmaceutics. Chitosan biopolymer represents an attractive biomaterial alternative because of its physicochemical and biological characteristics. Chitosan microspheres are expected to become promising carrier systems for drug and vaccine delivery, especially for non-invasive ways oral, mucosal and transdermal routes. Controlling the swelling rate and swelling capacity of the hydrogel and improving the fragile nature of microspheres under acidic conditions are the key challenges that need to be overcomed in order to enable the exploration of the full pharmaceutical potential use of these microparticles. Many studies have focused on the modification of chitosan microsphere structures with cross-linkers, various polymers blends and new organic-inorganic hybrid systems in order to obtain improved properties. In this work, microspheres made of chitosan and nanosized hydrophobic silica (Aerosil R972) were produced by a method consisting of two steps. First, a preparation of a macroscopically homogeneous chitosan-hydrophobic silica dispersion was prepared followed by spray drying. FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM) were used to characterize the microspheres. Also, the were conducted acid stability, moisture sorption capacity, release properties and biological assays. The chitosan-hydrophobic silica composite microspheres showed improved thermal degradation, lower water affinity, better acid stability and ability to retard rifampicin and propranolol hydrochloride (drug models) release under simulated physiological conditions. In vitro biocompatibility studies indicated low cytotoxicity and low capacity to activate cell production of the pro-inflammatory mediator nitric oxide. The results show here encourage further studies on the use of the new chitosan-hydrophobic silica composite microspheres as drug carrier systems via oral or nasal routes.
Resumo:
The main objective of the present work is to contribute to the development of the coordination chemistry of macromolecules such as resorcinarene with the synthesis and characterization of new copper complexes with chloride, vanillin and resorcinarene binders, all coordinated to phenanthroline, a biologically active molecule with important properties in biological systems. The complex [(Cu(phen))4(resvan)], was synthesized from the direct reaction of the metals with resorcinarene and generates several possibilities for coordination, which hinders its characterization. Therefore, in order to limit the coordination sites of the ligand, the complex [(Cu(phen))4(resvan)]Cl4 was formed from a new synthetic methodology. The complex cis-[Cu(phen)Cl2], cis-[Cu(phen)(van)]Cl, [(Cu(phen))4(resvan)] and [(Cu(phen))4(resvan)]Cl4 were characterized by spectroscopic techniques such as IR, UV-vis and EPR. By using infrared it has been possible to demonstrate the presence of the phenanthroline ligand in the synthesized complexes, and vanillin in the complex cis- [Cu(phen)(van)]Cl and resvan ligand in the complex [(Cu(phen))4(resvan)], besides this indicating the formation of resorcinarene in the complex [(Cu(phen))4(resvan)]Cl4. The electronic spectra of these coordination compounds indicated the presence of the phenanthroline ligand, by its intense bands in the ultraviolet region. For the complex cis- [Cu(phen)(van)]Cl it still indicated the presence of the ligand vanillin based on intraligand bands of vanillin and charge transfer, LMCT. Furthermore, the spectra showed d-d bands, confirming the formation of metal compounds. The amount of copper atoms present in the complex [(Cu(phen))4(resvan)]Cl4 was estimated from a comparative analysis of the absorbances of solutions of the same concentration of [(Cu(phen))4(resvan)]Cl4 and cis- [Cu(phen)(van)]Cl, which indicates that these compounds have copper atoms in the ratio 4:1. The EPR spectra of the complex cis-[Cu(phen)Cl2], cis-[Cu(phen)(van)]Cl and [(Cu(phen))4(resvan)]Cl4 showed axial profiles, while the complex [(Cu(phen))4(resvan)] showed of axial and rhombic profiles, indicating a change in the symmetry of the Cu (II) to this complex environment. The binders vanillin and resvan underwent biological assays with satisfactory results, both exhibited antioxidant activity and low toxicity, as well vanillin present antitoxoplásmico character.
Resumo:
The sustainable use of waste resulting from the agribusiness is currently the focus of research, especially the sugar cane bagasse (BCA), being the lignocellulosic waste produced in greater volume in the Brazilian agribusiness, where the residual biomass has been applied in production energy and bioproducts. In this paper, pulp was produced in high purity from the (BCA) by pulping soda / anthraquinone and subsequent conversion to cellulose acetate. Commercial cellulose Avicel was used for comparison. The obtained cellulose acetate was homogeneous acetylation reaction by modifying the variables, the reaction time in hours (8, 12, 16, 20 and 24) and temperature in ° C (25 and 50). FTIR spectra showed characteristic bands identical to cellulosic materials, demonstrating the efficiency of separation by pulping. The characterization of cellulose acetate was obtained and by infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TG / DTG / DSC), scanning electron microscopy (SEM) and determining the degree of substitution (DS ) for the cellulose acetate to confirm the acetylation. The optimal reaction time for obtaining diacetates and triacetates, at both temperatures were 20 and 24 h. Cellulose acetate produced BCA presented GS between 2.57 and 2.7 at 25 ° C and 50 ° C GS obtained were 2.66 and 2.84, indicating the actual conversion of cellulose BCA of di- and triacetates. Comparative mode, commercial cellulose Avicel GS showed 2.78 and 2.76 at 25 ° C and 2.77 to 2.75 at 50 ° C. Data were collected in time of 20 h and 24 h, respectively. The best result was for the synthesis of cellulose acetate obtained from the BCA GS 2.84 to 50 ° C and 24 hours, being classified as cellulose triacetate, which showed superior result to that produced with the commercial ethyl cellulose Avicel, demonstrating converting potential of cellulose derived from a lignocellulosic residue (BCA), low cost, prospects of commercial use of cellulose acetate
Resumo:
The sulfated polysaccharides (SP) from the edible red seaweed Gracilaria birdiae were obtained using five different condition extraction (GB1: Water; GB1p: Water/proteolysis; GB1s: Water/sonication; GB1sp: Water/sonication/proteolysis; GB2s: NaOH/sonication; GB2sp: NaOH/sonication/proteolysis. The yield (g) increased in the following order GB2sp>GB1sp>GB1p>GB2s>GB1s>GB1. However, the amount of SP extracted increased in different way GB2sp>GB1p>GB1>GB1sp>GB1s>GB2s. Infrared and electrophoresis analysis showed that all conditions extracted the same SP. In addition, monosaccharide composition showed that ultrasound promotes the extraction of other polysaccharides than SP. In the prothrombin time (PT) test, which evaluates the extrinsic coagulation pathway, none of the samples showed anticoagulant activity. While in the activated partial thromboplastin time (aPTT) test, which evaluates the intrinsic coagulation pathway, all samples showed anticoagulant activity, except GB2s. The aPTT activity decreased in the order of GB1sp>GB2sp>GB1p>GB1>GB1s>GB2s. Total capacity antioxidant (TCA) of the SP was also affected by condition extraction, since GB2s and GB1 showed lower activity in comparison to the other conditions. In conclusion, the conditions of SP extraction influence their biological activities and chemical composition. The data showed NaOH/sonication/proteolysis was the best condition to extract anticoagulant and antioxidant SPs from Gracilaria birdiae.
Resumo:
Several materials are currently under study for the CO2 capture process, like the metal oxides and mixed metal oxides, zeolites, carbonaceous materials, metal-organic frameworks (MOF's) organosilica and modified silica surfaces. In this work, evaluated the adsorption capacity of CO2 in mesoporous materials of different structures, such as MCM-48 and SBA- 15 without impregnating and impregnated with nickel in the proportions 5 %, 10 % and 20 % (m/m), known as 5Ni-MCM-48, 10Ni-MCM-48, 20Ni-MCM-48 and 5Ni-SBA-15, 10NiSBA-15, 20Ni-SBA-15. The materials were characterized by means of X-ray diffraction (XRD), thermal analysis (TG and DTG), Fourier transform infrared spectroscopy (FT-IR), N2 adsorption and desorption (BET) and scanning electron microscopy (SEM) with EDS. The adsorption process was performed varying the pressure of 100 - 4000 kPa and keeping the temperature constant and equal to 298 K. At a pressure of 100 kPa, higher concentrations of adsorption occurred for the materials 5Ni-MCM-48 (0.795 mmol g-1 ) and SBA-15 (0.914 mmol g-1 ) is not impregnated, and at a pressure of 4000 kPa for MCM-48 materials (14.89 mmol g-1) and SBA-15 (9.97 mmol g-1) not impregnated. The results showed that the adsorption capacity varies positively with the specific area, however, has a direct dependency on the type and geometry of the porous structure of channels. The data were fitted using the Langmuir and Freundlich models and were evaluated thermodynamic parameters Gibbs free energy and entropy of the adsorption system
Resumo:
In this study we evaluated the capacity removal of PAHs in an oily solution between the bentonite hydrofobized with linseed oil and paraffin with natural bentonite. Analyses of natural bentonite and hydrofobized were made by the characterization techniques: (1) Thermogravimetric Analysis (TGA), which aimed to evaluate the thermal events due to mass loss, both associated with the exit of moisture and decomposition of clay as due to hidrofobizante loss agent. (2) Analysis of X-ray diffraction (XRD) in order to determine the mineralogical phases that make up the structure of clay and (3) Spectrophotometry in the infrared region used to characterize the functional groups of both the matrix mineral (bentonite) and the hidrofobizantes agents (linseed oil and paraffin). We used a factorial design 24 with the following factors; hidrofobizante, percent hidrofobizante, adsorption time and volume of the oily solution. Analyzing the factorial design 24 was seen that none of the factors apparently was more important than the others and, as all responses showed significant values in relation to the ability of oil removal was not possible to evaluate a difference in the degree of efficiency the two hidrofobizantes. For the new study compared the efficiency of the modified clay, with each hidrofobizante separately in relation to their natural form. As such, there are four new factorial designs 23 using natural bentonite as a differentiating factor. The factors used were bentonite (with and without hydrophobization), exposure time of the adsorbent material to the oily solution and volume of an oily solution, trying to interpret how these factors could influence the process of purifying water contaminated with PAHs. Was employed as a technique for obtaining responses to fluorescence spectroscopy, as already known from literature that PAHs, for presenting combined chains due to condensation of the aromatic rings fluoresce quite similar when excited in the ultraviolet region and as an auxiliary technique to gas chromatography / mass spectrometry (GC-MS) used for the analysis of PAHs in order to complement the study of fluorescence spectroscopy, since the spectroscopic method only allows you an idea of total number of fluorescent species contained in the oil soluble. The result shows an excellent adsorption of PAHs and other fluorescent species assigned to the main effect of the first factor, hydrophobization for the first planning 23 BNTL 5%, for 93% the sixth stop in the second test (+-+),factorial design 23 BNTL 10%, the fourth test (++-) with 94.5% the third factorial design 23 BNTP 5%, the second test (+--) with 91% and the fourth and final planning 23 BNTP 10%, the last test ( + + +) with 88%. Compared with adsorption of bentonite in its natural form. This work also shows the maximum adsorption of each hidrofobizante
Resumo:
The preparation of nanostructured materials using natural clays as support, has been studied in literature under the same are found in nature and consequently, have a low price. Generally, clays serve as supports for metal oxides by increasing the number of active sites present on the surface and can be applied for various purposes such as adsorption, catalysis and photocatalysis. Some of the materials that are currently highlighted are niobium compounds, in particular, its oxides, by its characteristics such as high acidity, rigidity, water insolubility, oxidative and photocatalytic properties. In this scenario, the study aimed preparing a composite material oxyhydroxide niobium (NbO2OH) / sodium vermiculite clay and evaluate its effectiveness with respect to the natural clay (V0) and NbO2OH. The composite was prepared by precipitation-deposition method and then characterized by X-ray diffraction, infrared spectroscopy (XRD), energy dispersive X-ray (EDS), thermal analysis (TG/DTG), scanning electron microscopy (SEM), N2 adsorption-desorption and investigation of distribution of load. The application of the material NbO2OH/V0 was divided in two steps: first through oxidation and adsorption methods, and second through photocatalytic activity using solar irradiation. Studies of adsorption, oxidation and photocatalytic oxidation monitored the percentage of color removal from the dye methylene blue (MB) by UV-Vis spectroscopy. The XRD showed a decrease in reflection d (001) clay after modification; the FTIR indicated the presence of both the clay when the oxyhydroxide niobium to present bands in 1003 cm-1 related to Si-O stretching bands and 800 cm-1 to the Nb-O stretching. The presence of niobium was also confirmed by EDS indicated that 17 % by mass amount of the metal. Thermal analysis showed thermal stability of the composite at 217 °C and micrographs showed that there was a decrease in particle size. The investigation of the surface charge of NbO2OH/V0 found that the material exhibits a heterogeneous surface with average low and high negative charges. Adsorption tests showed that the composite NbO2OH/V0 higher adsorption capacity to remove 56 % of AM, while the material removed from V0 only 13 % showed no NbO2OH and adsorptive capacity due to the formation of H-aggregates. The percent removal of dye color for the oxidation tests showed little difference from the adsorption, being 18 and 66 % removal of dye color for V0 and NbO2OH/V0 respectively. The NbO2OH/V0 material shows excellent photocatalytic activity managing to remove just 95,5 % in 180 minutes of the color of MB compared to 41,4 % and 82,2 % of V0 the NbO2OH, proving the formation of a new composite with distinct properties of its precursors.
Resumo:
The goal set for this work was to synthesize and to characterize new iron and copper complexes with the Schiff base 3-MeOsalen and ligands of biological relevance, whose formulas are [Fe(3-MeOsalen)NO2], [Fe(3-MeOsalen)(etil2-dtc)], [Fe(3-MeOsalen)NO] and Na[Cu(3-MeOsalen)NO2]. The compounds were characterized by vibrational spectroscopy in the infrared region (IV) and Electronic spectroscopy in the ultraviolet and visible region (Uv-Vis). From the analysis of infrared spectra, they proved to formation of precursor complexes, as evidenced by changes in the vibrationals frequencies ν(C=N) e ν(C-O) and the emergence of vibrationals modes metal-oxygen and metal-nitrogen. For nitro complexes of iron and copper were observed ν(NO2)ass around 1300 cm-1 e ν(NO2)sim in 1271 cm-1 , indicating that the coordination is done via the nitrogen atom. The complex spectrum [Fe(3-MeOsalen)(etil2-dtc)] exhibited two bands, the ν(C-NR2) in 1508 cm-1 e ν(C-S) in 997 cm-1 , the relevant vibrational modes of coordinating ligand in the bidentate form. For the complex [Fe(3-MeOsalen)NO] was observed a new intense band in 1670 cm-1 related to the ν(NO). With the electronic spectra, the formation of complexes was evidenced by shifts of bands intraligands transitions and the emergence of new bands such as LMCT (p Cl- d* Fe3+) in [Fe(3-MeOsalen)Cl] and the d-d in [Cu(3-MeOsalen)H2O]. As for the [Fe(3-MeOsalen)NO2] has highlighted the absence of LMCT band present in the precursor complex as for the [Cu(3-MeOsalen)NO2] found that the displacement of the band hipsocrômico d-d on 28 nm. The electronic spectrum of [Fe(3-MeOsalen)(etil2-dtc)] presented LMCT band shifts and changes in intraligantes transitions. With regard to [Fe(3-MeOsalen)NO], revealed a more energetic transitions intraligands regions from the strong character π receiver NO and MLCT band of transition dπFe(II)π*(NO).
Resumo:
This work aimed to promote the synthesis, characterization and propose a plausible molecular structure for coordination compounds involving furosemide (4-Chloro-2-(2- furylmethylamino)-5-sulfamoyl-benzoic acid) with the metal ions Ni+2, Zn+2 and Co+2. The compounds were obtained in methanoic medium by evaporation of the solvent after the synthesis procedure. For characterization of coordination compounds determining the levels of metals by EDTA complexometry, infrared spectroscopy (FTIR), solubility of compounds in various solvents, thermogravimetry (TG), differential scanning calorimetry (DSC), differential thermal analysis were made (DTA), determination of the carbon , hydrogen and nitrogen (CHN). The results of infrared spectroscopy in the region suggest that the organic ligand is coordinated in a bidentate fashion to the metal ions, the metal center interactions to occur by the coordination of the nitrogen atom of the amino group and the oxygen atom of the carboxylic acid of the structure of furosemide. With the results of the levels of metal, elemental analysis (CHN) and thermal analysis has been possible to propose the structure of the ligand. The values of the molar conductivity of the complex in acetonitrile behavior suggest the non acetonitrile electrolyte solution. With the solubility tests it was found that the compounds have high solubility in methanol and acetonitrile, as are partially insoluble in water. From the results of thermal analysis (TG, DSC, DTA), it was possible to obtain the thermal behavior of the compounds as stages of dehydration, thermal stability, decomposition and the energies involved.
Resumo:
Caffeine is the most consumed psychostimulant, with effects on attention, memory, and arousal. But when this substance is ingested near to bedtime there is a decrease on sleep, interfering on mnemonic processes. So, our ain was to investigate how the caffeine ingested near to sleep onset acts on sleep and memory in marmosets. We used 16 adult marmosets, single housed, in a 12:12h light-dark cycle. For registering locomotor activity were used two kinds of sensors. The gyroscope sensor registers activity each 30 sec and detects motion with good accuracy. Because of this we used this sensor for detecting nocturnal activity. The second sensor was based on infrared and accumulates activity each 5 min and it’s not able to detect nocturnal activity, just diurnal activity. We also used camera for registering Rest phase of one marmoset. For the cognitive task, the animals needed to learn a rewarded context (CR) when compared to a non-rewarded context CNR). This experiment comprises 5 phases: 1) Two days of habituation to apparatus; 2)Training for 8 days; 3) oral administration of caffeine (10 mg/kg) or placebo administration ±1h before sleep onset, for 8 days, with marmosets receiving placebo or caffeine; 4) retraining to apparatus and after that, placebo administration (placebo group-GP), or caffeine administration (with continuous group-GC and acute groupGA); 5) Test, for evaluating learning to CR. The sessions were filmed and each one had 8 min of duration. At 7 am started the habituation, training and test sessions, and at 3:15 pm started retraining. The results for gyroscope sensor showed that there was coincidence of 68,57% with nocturnal register of the cameras. Then, the gyroscope sensors detected nocturnal activity for all experimental groups Moreover, when compared sensor gyroscope with sensor based on infrared, was observed that both sensor presented similarity on patterns of activity curve. When we observed the effects of caffeine on Activity-Rest Cycle in GP, GA and GC, is possible to see that that gyroscope sensors and based on infrared presented only intra group differences. As behavioral results, the marmosets learned to discriminate CR when compared to CNR. Moreover, GP presented deficits on memory recall during the test, and GA increased the memory recall, when both were compared to GP. We concluded that the marmosets were able to learning the cognitive task and that the caffeine ingested near to sleep onset acts modulating memory in these animals. Moreover the gyroscope sensor can be used as alternative tool for investigating nocturnal activity. Then, the utilization of this non-invasive device allows marmosets exhibit their behavior within the laboratory conditions as natural as possible.
Resumo:
Micro cracking during service is a critical problem in polymer structures and polymer composite materials. Self-healing materials are able to repair micro cracks, thus their preventing propagation and catastrophic failure of structural components. One of the self-healing approaches presented in the literature involves the use of solvents which react with the polymer. The objective of this research is to investigate a procedure to encapsulate solvents in halloysite nanotubes to promote self-healing ability in epoxy. Healing is triggered by crack propagation through embedded nanotubes in the polymer, which then release the liquid sovent into the crack plane. Two solvents were considered in this work: dimethylsulfoxide (DMSO) and nitrobenzene. The nanotubes were coated using the layer-by-layer technique of oppositely charged polyelectrolytes: cetyltrimethylammonium bromide (CTAB) and sodium polyacrylate. Solvent encapsulation was verified by X-ray diffraction (XRD), Fourier transform infrared (FTIR), analysis thermogravimetry (TGA), adsorption and desorption of nitrogen and scanning electron microscopy (SEM). The introduction of the solvent DMSO into the cavity of the nanotubes was confirmed by the techniques employed. However, was not verified with nitrobenzene only promoted clay aggregation. The results suggest that the CTAB reacted with the halloystite to form a sealing layer on the surface of the nanotubes, thus encapsulating the solvent, while this was not verified using sodium polyacrylate.
Resumo:
This work describes the synthesis and aplication of homogeneous and heterogenized iron catalysts in the alkylation reaction of toluene with propene, empolying experimental design. The homogenous complex was obtained trough the synthesis of the organic ligand folowed by the complexation of the iron(II) chloride. As to the heterogenized complexes, first were synthetized the inorganic supports (SBA-15, MCM-41 and Al-MCM-41). Then, it was synthetized the ligand again, that through funcionalization with chloropropyltrimethoxysilane (CPTMS), was anchored on the support previously calcinated. To these anchored ligands, was complexed the iron(II) chloride, previously solubilizated in tetrahydrofuran (THF). The organic ligand characterization was accomplished trough nuclear magnetic resonance (NMR) and Infrared spectroscopy (IV). The supports were characterized with x-ray diffraction (DRX), texture analysis with nitrogen adsorption/desorption (before and after the anchoring), termogravimetric analysis (TG) and infrared (IV). The metalic content was quantified trough the atomic absorption spectrophotometry (AAS). The complexes were tested in catalytic reactions emolying ethylaluminium sesquichloride (EASC) as co-catalyst in steel reactor, under mecanic stirring. The reaction conditions ranged from 4 to 36 ◦C, with many aluminum/iron ratios. The catalysts were actives in homogeneous and heterogenized ways. The homogenous catalytic complex showed a maximum turnover frequency (TOF) of 8.63 ×103 · h −1 , while, in some conditions, the anchored complexes showed better results, with TOF of until 8.08 ×103 · h −1 . Aditionally, it was possible to determine an equation, to the homogenous catalyst, that describes the product quantity in function of reacional temperature and aluminum/iron ratio.
Resumo:
The cutting fluids are lubricants used in machining processes, because they present many benefits for different processes. They have many functions, such as lubrication, cooling, improvement in surface finishing, besides they decreases the tool wear and protect it against corrosion. Therefore due to new environment laws and demand to green products, new cutting fluids must be development. These shall be biodegradable, non-toxic, safety for environment and operator healthy. Thus, vegetable oils are a good option to solve this problem, replacing the mineral oils. In this context, this work aimed to develop an emulsion cutting fluid from epoxidized vegetable oil, promoting better lubrication and cooling in machining processes, besides being environment friendly. The methodology was divided in five steps: first one was the biolubricant synthesis by epoxidation reaction. Following this, the biolubricant was characterized in terms of density, acidity, iodo index, oxirane index, viscosity, thermal stability and chemical composition. The third step was to develop an emulsion O/A with different oil concentration (10, 20 and 25%) and surfactant concentration (1, 2.5 and 5%). Also, emulsion stability was studied. The emulsion tribological performance were carried out in HFRR (High Frequency Reciprocating Rig), it consists in ball-disc contact. Results showed that the vegetable based lubricant may be synthesized by epoxidationreaction, the spectra showed that there was 100% conversion of the epoxy rings unsaturations. In regard the tribological assessment is observed that the percentage of oil present in the emulsion directly influenced the film formation and coefficient of friction for higher concentrations the film formation process is slow and unstable, and the coefficient of friction. The high concentrations of surfactants have not improved the emulsions tribological performance. The best performance in friction reduction was observed to emulsion with 10% of oil and 5% of surfactant, its average wear scar was 202 μm.