973 resultados para stoploss mutation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: FGFR1 mutations cause isolated hypogonadotropic hypogonadism (IHH) with or without olfactory abnormalities, Kallmann syndrome, and normosmic IHH respectively. Recently, missense mutations in FGF8, a key ligand for fibroblast growth factor receptor (FGFR) 1 in the ontogenesis of GnRH, were identified in IHH patients, thus establishing FGF8 as a novel locus for human GnRH deficiency. Objective: Our objective was to analyze the clinical, hormonal, and molecular findings of two familial IHH patients due to FGF8 gene mutations. Methods and Patients: The entire coding region of the FGF8 gene was amplified and sequenced in two well-phenotyped IHH probands and their relatives. Results: Two unique heterozygous nonsense mutations in FGF8(p.R127X and p.R129X) were identified in two unrelated IHH probands, which were absent in 150 control individuals. These two mutations, mapped to the core domain of FGF8, impact all four human FGF8 isoforms, and lead to the deletion of a large portion of the protein, generating nonfunctional FGF8 ligands. The p.R127X mutation was identified in an 18-yr-old Kallmann syndrome female. Her four affected siblings with normosmic IHH or delayed puberty also carried the p.R127X mutation. Additional developmental anomalies, including cleft lip and palate and neurosensorial deafness, were also present in this family. The p.R129X mutation was identified in a 30-yr-old man with familial normosmic IHH and severe GnRH deficiency. Conclusions: We identified the first nonsense mutations in the FGF8 gene in familial IHH with variable degrees of GnRH deficiency and olfactory phenotypes, confirming that loss-of-function mutations in FGF8 cause human GnRH deficiency. (J Clin Endocrinol Metab 95: 3491-3496, 2010)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal stromal tumor (GIST) is the most common mesenchymal neoplasm of the gastrointestinal tract. Discovered on GIST-1 (DOG1) is a recently described protein expressed in GISTs irrespective of mutation status. The aim of this study was to investigate the immunohistochemical expression of DOG1 using 2 different monoclonal antibodies (DOG1.1 and the commercially available K9 antibody) in 668 GIST cases and to compare the results with the expression of KIT. DOG1 and KIT expression also were studied in most human normal tissues and several nonmesenchymal and mesenchymal tumors other than GIST. KIT was expressed in 643 (96.3%) GISTs. DOG1.1 and K9 were positive in 538 (80.5%) and 642 (96.1%) GIST cases, respectively. In 25 (3.7%) KIT-negative GIST cases, DOG1 was expressed in 5 (20.0%) and 19 (76.0%) using DOG1.1 and K9 antibodies, respectively. Only 0.9% of GISTs were negative for KIT, DOG1.1, and K9. Most normal human tissues did not reveal KIT and DOG1 expression. DOG1.1 was positive in only 2 of 57 synovial sarcomas and 1 of 61 soft tissue leiomyosarcomas. K9 was positive in 5 of 57 synovial sarcomas, 1 of 14 angiosarcomas, 1 of 61 soft tissue leiomyosarcomas, 3 of 4 adenoid cystic carcinomas of the head and neck, and in myoepithelial cells of 9 of 11. broadenomas of the breast. In conclusion, the commercially available K9 is of great utility for the diagnosis of most KIT-negative GISTs, and the combination of both KIT and K9 antibody in a panel of immunohistochemistry can define the diagnosis of GIST in more than 99% of cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although human T-cell lymphotropic virus type 2 (HTLV-2) is considered of low pathogenicity, serological diagnosis is important for counseling and monitoring. The confirmatory tests most used are Western blot (WB) and PCR. However, in high-risk populations, about 50% of the indeterminate WB were HTLV-2 positives by PCR. The insensitivity of the WB might be due to the use of recombinant proteins of strains that do not circulate in our country. Another possibility may be a high level of immunosuppression, which could lead to low production of virus, resulting in low stimulation of antibody. We found one mutation, proline to serine in the envelope region in the position 184, presented at least 1/3 of the samples, independent the indeterminate WB profile. In conclusion, we found no correlation of immune state, HTLV-2 proviral load, or env diversity in the K55 region and WB indeterminate results. We believe that the only WB kit available in the market is probably more accurate to detect HTLV-1 antibodies, and some improvement for HTLV-2 detection should be done in the future, especially among high-risk population. J. Med. Virol. 82:837-842,2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type 1, X-linked Hyper-IgM syndrome (HIGM1) is caused by mutations in the gene encoding the CD154 protein, also known as CD40 ligand (CD40LG). CD40L is expressed in activated T cells and interacts with CD40 receptor expressed on B lymphocytes and dendritic cells. Affected patients present cellular and humoral immune defects, with infections by intracellular, opportunistic and extracellular pathogens. In the present study we investigated the molecular defects underlying disease in four patients with HIGM1. We identified four distinct CD40L mutations, two of them which have not been previously described. P1 harboured the novel p.G227X mutation which abolished CD40L expression. P2 had a previously described frame shift deletion in exon 2 (p.I53fsX65) which also prevented protein expression. P3 demonstrated the previously known p.V126D change in exon 4, affecting the TNF homology (TNFH) domain. Finally, P4 evidenced the novel p.F229L mutation also located in the TNFH domain. In silico analysis of F229L predicted the change to be pathological, affecting the many hydrophobic interactions of this residue. Precise molecular diagnosis in HIGM syndrome allows reliable detection of carriers, making genetic counselling and prenatal diagnosis possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Wolfram syndrome (WS) is a rare, progressive, neurodegenerative disorder with an autosomal recessive pattern of inheritance. The gene for WS, WFS1, was identified on chromosome 4p16 and most WS patients carry mutations in this gene. However. some studies have provided evidence for genetic heterogeneity and the genotype-phenotype relationships are not clear. Our aim was to ascertain the spectrum of WFS1 mutations in Brazilian patients with WS and to examine the phenotype-genotype relationships in these patients. Design and methods: Clinical characterization and analyses of the WFS1. gene were performed in 27 Brazilian patients with WS from 19 families. Results: We identified 15 different mutations in the WFS1 gene in 26 patients, among which nine are novel. All mutations occurred in exon 8, except for one missense mutation which was located in exon 5. Although we did not find any clear phenotype-genotype relationship in patients with mutations in exon 8, the homozygous missense mutation in exon 5 was associated with a mild phenotype: onset of diabetes mellitus and optic atrophy during adulthood with good metabolic control being achieved with low doses of sulfonylurea Conclusions: Our data show that WFS1 is the major gene involved in WS in Brazilian patients and most mutations are concentrated in exon 8. Also, our study increases the spectrum of WFS1 mutations. Although no clear phenotype-genotype relationship was found for mutations in exon 8, a mild phenotype was associated with a homozygous missense mutation in exon 5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the clinicopathological, immunohistochemical, and molecular genetic features of gastrointestinal stromal tumors in Brazil and compare them with cases from other countries. Five hundred and thirteen cases were retrospectively analyzed. HE-stained sections and clinical information were reviewed and the immunohistochemical expression of CD117, CD34, smooth-muscle actin, S-100 protein, desmin, CD44v3 adhesion molecule, p53 protein, epidermal growth factor receptor, and Ki-67 antigen was studied using tissue microarrays. Mutation analysis of KIT and platelet-derived growth factor receptor-alpha genes was also performed. There was a slight female predominance (50.3%) and the median age at diagnosis was 59 years. The tumors were mainly located in the stomach (38.4%). Immunohistochemistry showed that CD117 was expressed in 95.7% of cases. Epidermal growth factor receptor expression was observed in 84.4% of tumors. p53 protein expression was found only in 2.6% of cases but all belonged to the high-risk group for aggressive behavior according to the National Institutes of Health consensus approach. No CD44v3 adhesion molecule expression was detected. KIT exon 11 mutations were the most frequent (62.2%). The present data confirm that gastrointestinal stromal tumors in Brazilian patients do not differ from tumors occurring in other countries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Germ-line mutations in CYLD are found in patients with familial skin appendage tumours. The protein product functions as a deubiquitinase enzyme, which negatively regulates NF-kappa B and c-Jun N-terminal kinase signalling. Brooke-Spiegler syndrome (BSS) is characterised by cylindromas, trichoepitheliomas and spiradenomas, whereas in familial cylindromatosis (FC) patients present with cylindromas and in multiple familial trichoepitheliomas (MFT) with trichoepitheliomas as the only skin tumour type. Although described as distinct entities, recent studies suggest that they are within the spectrum of a single entity. Objective: To investigate the mutation spectrum of CYLD and possible genotype-phenotype correlations. Methods: 25 families including 13 BSS, 3 FC, and 9 MFT families were examined and evaluated for mutations in the CYLD gene. Results: In total, 18 mutations in CYLD, including 6 novel mutations, were identified in 25 probands (72%). The mutation frequencies among distinct phenotypes were 85% for BSS, 100% for FC, and 44% for MFT. The majority of the mutations were insertions, deletions or nonsense mutations leading to formation of truncated proteins. All mutations were located between exons 9 to 20, encoding the NEMO binding site and the catalytic domain. Genotype-phenotype analysis failed to reveal a correlation between the types of mutations and their location within the gene and the patients` phenotypes and disease severity. Conclusions: This study provides further evidence on the role of CYLD in the pathogenesis of skin appendage tumours characterised by cylindromas, trichoepitheliomas and/or spiradenomas, but the molecular mechanisms of CYLD in skin tumorigenesis and the reasons for phenotypic variability remain to be explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alagille syndrome is a rare developmental disorder combining bile duct paucity, congenital cardiopathy, facial dysmorphy, vertebrae defects, and ocular abnormalities; and frequent renal abnormalities. It does not usually predispose to malignancies. Nephroblastoma has been observed in many developmental disorders, but never in Alagille syndrome. We report two original cases of nephroblastoma associated to Alagille syndrome. We identified a new V136G JAG1 missense mutation in one patient and a constitutional deletion of 20p12 in the other. In one nephroblastoma an additional somatic 1p36 deletion was present. The link between Alagille syndrome, JAG1 alterations and nephroblastoma is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kallmann syndrome (KS) is a developmental disease characterized by the association of isolated hypogonadotropic hypogonadism and anosmia/hyposmia. We report an unusual presentation of two females with KS and empty sella. These females, aged at 20 and 29-year-old, presented primary amenorrhea with prepubertal estradiol and low gonadotropin levels. No other significant clinical signs were observed. Empty sella was observed on MRI in both cases. Sequencing of FGFR1 gene, recently implicated in autosomal form of KS, was performed and one splicing mutation (IVS14 + 1G > A) was identified in one patient.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and Purpose-Plasma glutathione peroxidase (GPx-3) is a major antioxidant enzyme in plasma and the extracellular space that scavenges reactive oxygen species produced during normal metabolism or after oxidative insult. A deficiency of this enzyme increases extracellular oxidant stress, promotes platelet activation, and may promote oxidative posttranslational modification of fibrinogen. We recently identified a haplotype (H-2) in the GPx-3 gene promoter that increases the risk of arterial ischemic stroke among children and young adults. Methods-The aim of this study is to identify possible relationships between promoter haplotypes in the GPx-3 gene and cerebral venous thrombosis (CVT). We studied the GPx-3 gene promoter from 23 patients with CVT and 123 young controls (18 to 45 years) by single-stranded conformational polymorphism and sequencing analysis. Results-Over half of CVT patients (52.1%) were heterozygous (H1H2) or homozygous (H2H2) carriers of the H-2 haplotype compared with 12.2% of controls, yielding a more than 10-fold independent increase in the risk of CVT (OR=10.7; 95% CI, 2.70 to 42.36; P<0.0001). Among women, the interaction of the H2 haplotype with hormonal risk factors increased the OR of CVT to almost 70 (P<0.0001). Conclusions-These findings show that a novel GPx-3 promoter haplotype is a strong, independent risk factor for CVT. As we have previously shown that this haplotype is associated with a reduction in transcriptional activity, which compromises antioxidant activity and antithrombotic benefits of the enzyme, these results suggest that a deficiency of GPx-3 leads to a cerebral venous thrombophilic state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a case of autoimmune lymphoproliferative syndrome (ALPS) caused by a previously undescribed minimal deletion in the death domain of the FAS gene. ALPS is an uncommon disease associated with an impaired Fas-mediated apoptosis. The patient presented with a history of splenomegaly since 4 months of age, associated with cervical lymphadenopathy, which improved with oral corticosteroid treatment. Relevant laboratory findings were the presence of anemia, thrombocytopenia, and positive direct and indirect Coombs tests. He was not an offspring of consanguineous parents. Two cervical lymph node biopsies were performed, at 4 years and at 6 years of age. In both lymph nodes, there was marked paracortical expansion by lymphocytes in variable stages of immunoblastic transformation and a very high cell proliferating index. Some clear cells were also present, raising the suspicion of malignant lymphoma. In one of the lymph nodes, there was also a focus rich in large histiocytes with round nuclei and emperipolesis, consistent with focal Rosai-Dorfman disease. Immunostaining showed numerous CD3+ cells, many of which were double-negative (CD4- CD8-) and expressed CD57, especially around the follicles. Molecular studies of the lymph node biopsy showed a point deletion (4-base pair deletion) in exon 9 of the FAS gene (930del TGCT), which results in 3 missense amino acids. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: A limited number of mutations in the GH secretagogue receptor gene (GHSR) have been described in patients with short stature. Objective: To analyze GHSR in idiopathic short stature (ISS) children including a subgroup of constitutional delay of growth and puberty (CDGP) patients. Subjects and methods: The GHSR coding region was directly sequenced in 96 independent patients with ISS, 31 of them with CDGP, in 150 adults, and in 197 children with normal stature. The pharmacological consequences of GHSR non-synonymous variations were established using in vitro cell-based assays. Results: Five different heterozygous point variations in GHSR were identified (c.-6 G>C, c.251G>T (p.Ser84Ile), c.505G>A (p.Ala169Thr), c.545 T>C (p.Val182Ala), and c.1072G>A (p.Ala358Thr)), all in patients with CDGP. Neither these allelic variants nor any other mutations were found in 694 alleles from controls. Functional studies revealed that two of these variations (p.Ser84Ile and p. Val182Ala) result in a decrease in basal activity that was in part explained by a reduction in cell surface expression. The p.Ser84Ile mutation was also associated with a defect in ghrelin potency. These mutations were identified in two female patients with CDGP (at the age of 13 years, their height SDS were -2.4 and -2.3). Both patients had normal progression of puberty and reached normal adult height (height SDS of -0.7 and -1.4) without treatment. Conclusion: This is the first report of GHSR mutations in patients with CDGP. Our data raise the intriguing possibility that abnormalities in ghrelin receptor function may influence the phenotype of individuals with CDGP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Familial hypertrophic cardiomyopathy (FHC) is frequently caused by cardiac myosin-binding protein C (cMyBP-C) gene mutations, which should result in C-terminal truncated mutants. However, truncated mutants were not detected in myocardial tissue of FHC patients and were rapidly degraded by the ubiquitin-proteasome system (UPS) after gene transfer in cardiac myocytes. Since the diversity and specificity of UPS regulation lie in E3 ubiquitin ligases, we investigated whether the muscle-specific E3 ligases atrogin-1 or muscle ring finger protein-1 (MuRF1) mediate degradation of truncated cMyBP-C. Human wild-type (WT) and truncated (M7t, resulting from a human mutation) cMyBP-C species were co-immunoprecipitated with atrogin-1 after adenoviral overexpression in cardiac myocytes, and WT-cMyBP-C was identified as an interaction partner of MuRF1 by yeast two-hybrid screens. Overexpression of atrogin-1 in cardiac myocytes decreased the protein level of M7t-cMyBP-C by 80% and left WT-cMyBP-C level unaffected. This was rescued by proteasome inhibition. In contrast, overexpression of MuRF1 in cardiac myocytes not only reduced the protein level of WT- and M7t-cMyBP-C by > 60%, but also the level of myosin heavy chains (MHCs) by > 40%, which were not rescued by proteasome inhibition. Both exogenous cMyBP-C and endogenous MHC mRNA levels were markedly reduced by MuRF1 overexpression. Similar to cardiac myocytes, MuRF1-overexpressing (TG) mice exhibited 40% lower levels of MHC mRNAs and proteins. Protein levels of cMyBP-C were 29% higher in MuRF1 knockout and 34% lower in TG than in WT, without a corresponding change in mRNA levels. These data suggest that atrogin-1 specifically targets truncated M7t-cMyBP-C, but not WT-cMyBP-C, for proteasomal degradation and that MuRF1 indirectly reduces cMyBP-C levels by regulating the transcription of MHC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Syk tyrosine kinase family plays an essential role in immunoreceptor tyrosine-based activation motif (ITAM) signaling. The binding of Syk to tyrosine-phosphorylated ITAM subunits of immunoreceptors, such as Fc epsilon RI on mast cells, results in a conformational change, with an increase of enzymatic activity of Syk. This conformational change exposes the COOH-terminal tail of Syk, which has three conserved Tyr residues (Tyr-623, Tyr-624, and Tyr-625 of rat Syk). To understand the role of these residues in signaling, wild-type and mutant Syk with these three Tyr mutated to Phe was expressed in Syk-deficient mast cells. There was decreased Fc epsilon RI-induced degranulation, nuclear factor for T cell activation and NF kappa B activation with the mutated Syk together with reduced phosphorylation of MAP kinases p38 and p42/44 ERK. In non-stimulated cells, the mutated Syk was more tyrosine phosphorylated predominantly as a result of autophosphorylation. In vitro, there was reduced binding of mutated Syk to phosphorylated ITAM due to this increased phosphorylation. This mutated Syk from non-stimulated cells had significantly reduced kinase activity toward an exogenous substrate, whereas its autophosphorylation capacity was not affected. However, the kinase activity and the autophosphorylation capacity of this mutated Syk were dramatically decreased when the protein was dephosphorylated before the in vitro kinase reaction. Furthermore, mutation of these tyrosines in the COOH-terminal region of Syk transforms it to an enzyme, similar to its homolog ZAP-70, which depends on other tyrosine kinases for optimal activation. In testing Syk mutated singly at each one of the tyrosines, Tyr-624 but especially Tyr-625 had the major role in these reactions. Therefore, these results indicate that these tyrosines in the tail region play a critical role in regulating the kinase activity and function of Syk.