969 resultados para semiconductor epitaxial layers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of InGaAs metamorphic buffer layers (MBLs) to facilitate the growth of lattice-mismatched heterostructures constitutes an attractive approach to developing long-wavelength semiconductor lasers on GaAs substrates, since they offer the improved carrier and optical confinement associated with GaAs-based materials. We present a theoretical study of GaAs-based 1.3 and 1.55 μm (Al)InGaAs quantum well (QW) lasers grown on InGaAs MBLs. We demonstrate that optimised 1.3 μm metamorphic devices offer low threshold current densities and high differential gain, which compare favourably with InP-based devices. Overall, our analysis highlights and quantifies the potential of metamorphic QWs for the development of GaAs-based long-wavelength semiconductor lasers, and also provides guidelines for the design of optimised devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly doped polar semiconductors are essential components of today’s semiconductor industry. Most strikingly, transistors in modern electronic devices are polar semiconductor heterostructures. It is important to thoroughly understand carrier transport in such structures. In doped polar semiconductors, collective excitations of the carriers (plasmons) and the atoms (polar phonons) couple. These coupled collective excitations affect the electrical conductivity, here quantified through the carrier mobility. In scattering events, the carriers and the coupled collective modes transfer momentum between each other. Carrier momentum transferred to polar phonons can be lost to other phonons through anharmonic decay, resulting in a finite carrier mobility. The plasmons do not have a decay mechanism which transfers carrier momentum irretrievably. Hence, carrier-plasmon scattering results in infinite carrier mobility. Momentum relaxation due to either carrier–plasmon scattering or carrier–polar-phonon scattering alone are well understood. However, only this thesis manages to treat momentum relaxation due to both scattering mechanisms on an equal footing, enabling us to properly calculate the mobility limited by carrier–coupled plasmon–polar phonon scattering. We achieved this by solving the coupled Boltzmann equations for the carriers and the collective excitations, focusing on the “drag” term and on the anharmonic decay process of the collective modes. Our approach uses dielectric functions to describe both the carrier-collective mode scattering and the decay of the collective modes. We applied our method to bulk polar semiconductors and heterostructures where various polar dielectrics surround a semiconducting monolayer of MoS2, where taking plasmons into account can increase the mobility by up to a factor 15 for certain parameters. This screening effect is up to 85% higher than if calculated with previous methods. To conclude, our approach provides insight into the momentum relaxation mechanism for carrier–coupled collective mode scattering, and better tools for calculating the screened polar phonon and interface polar phonon limited mobility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+) n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface. A leaky-capacitor model related to the dielectric properties of the protective oxide explains this loss, achieving excellent agreement with the data. From these findings, we formulate design principles for simultaneous optimization of built-in field, interface quality, and hole extraction to maximize the photovoltage of oxide-protected water-splitting anodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to their intriguing dielectric, pyroelectric, elasto-electric, or opto-electric properties, oxide ferroelectrics are vital candidates for the fabrication of most electronics. However, these extraordinary properties exist mainly in the temperature regime around the ferroelectric phase transition, which is usually several hundreds of K away from room temperature. Therefore, the manipulation of oxide ferroelectrics, especially moving the ferroelectric transition towards room temperature, is of great interest for application and also basic research. In this thesis, we demonstrate this using examples of NaNbO3 films. We show that the transition temperature of these films can be modified via plastic strain caused by epitaxial film growth on a structurally mismatched substrate, and this strain can be fixed by controlling the stoichiometry. The structural and electronic properties of Na1+xNbO3+δ thin films are carefully examined by among others XRD (e.g. RSM) and TEM and cryoelectronic measurements. Especially the electronic features are carefully analyzed via specially developed interdigitated electrodes in combination with integrated temperature sensor and heater. The electronic data are interpreted using existing as well as novel theories and models, they are proved to be closely correlated to the structural characteristics. The major results are: -Na1+xNbO3+δ thin films can be grown epitaxially on (110)NdGaO3 with a thickness up to 140 nm (thicker films have not been studied). Plastic relaxation of the compressive strain sets in when the thickness of the film exceeds approximately 10 – 15 nm. Films with excess Na are mainly composed of NaNbO3 with minor contribution of Na3NbO4. The latter phase seems to form nanoprecipitates that are homogeneously distributed in the NaNbO3 film which helps to stabilize the film and reduce the relaxation of the strain. -For the nominally stoichiometric films, the compressive strain leads to a broad and frequency-dispersive phase transition at lower temperature (125 – 147 K). This could be either a new transition or a shift in temperature of a known transition. Considering the broadness and frequency dispersion of the transition, this is actually a transition from the dielectric state at high temperature to a relaxor-type ferroelectric state at low temperature. The latter is based on the formation of polar nano-regions (PNRs). Using the electric field dependence of the freezing temperature, allows a direct estimation of the volume (70 to 270 nm3) and diameter (5.2 to 8 nm, spherical approximation) of the PNRs. The values confirm with literature values which were measured by other technologies. -In case of the off-stoichiometric samples, we observe again the classical ferroelectric behavior. However, the thermally hysteretic phase transition which is observed around 620 – 660 K for unstrained material is shifted to room temperature due to the compressive strain. Beside to the temperature shift, the temperature dependence of the permittivity is nearly identical for strained and unstrained materials. -The last but not least, in all cases, a significant anisotropy in the electronic and structural properties is observed which arises automatically from the anisotropic strain caused by the orthorhombic structure of the substrate. However, this anisotropy cannot be explained by the classical model which tries to fit an orthorhombic film onto an orthorhombic substrate. A novel “square lattice” model in which the films adapt a “square” shaped lattice in the plane of the film during the epitaxial growth at elevated temperature (~1000 K) nicely explains the experimental results. In this thesis we sketch a way to manipulate the ferroelectricity of NaNbO3 films via strain and stoichiometry. The results indicate that compressive strain which is generated by the epitaxial growth of the film on mismatched substrate is able to reduce the ferroelectric transition temperature or induce a phase transition at low temperature. Moreover, by adding Na in the NaNbO3 film a secondary phase Na3NbO4 is formed which seems to stabilize the main phase NaNbO3 and the strain and, thus, is able to engineer the ferroelectric behavior from the expected classical ferroelectric for perfect stoichiometry to relaxor-type ferroelectric for slightly off-stoichiometry, back to classical ferroelectric for larger off-stoichiometry. Both strain and stoichiometry are proven as perfect methods to optimize the ferroelectric properties of oxide films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to facilitate subject access interoperability a mechanism must be built that allows the different controlled vocabularies to communicate meaning, relationships, and levels of extension and intension so that different user groups using different controlled vocabularies could access collections across the network. Switching languages, the tools of controlled vocabulary compatibility, consist of a single layer that does not allow for a flexible control of the semantic levels of meaning, relationships, and extension or intension. This paper proposes a multilayered conceptual framework wherein the levels of meaning, relationships and extension and intension are each controlled as individual parameters, rather than in a single switching language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Describes four waves of Ranganathan’s dynamic theory of classification. Outlines components that distinguish each wave, and porposes ways in which this understanding can inform systems design in the contemporary environment, particularly with regard to interoperability and scheme versioning. Ends with an appeal to better understanding the relationship between structure and semantics in faceted classification schemes and similar indexing languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Se presentan los modelos de hopping de rango variable (variable range hopping; VRH), vecinos cercanos (nearest neighbor hopping; NNH) y barreras de potencial presentes en las fronteras de grano; como mecanismos de transporte eléctrico predominantes en los materiales semiconductores para aplicaciones fotovoltaicas. Las medidas de conductividad a oscuras en función de temperatura fueron realizadas para región de bajas temperaturas entre 120 y 400 K con Si y compuestos Cu3BiS2 y Cu2ZnSnSe4. Siguiendo la teoría de percolación, se obtuvieron parámetros hopping y la densidad de estados cerca del nivel de Fermi, N(EF), para todas las muestras. A partir de los planteamientos dados por Mott para VRH, se presentó el modelo difusional, que permitió establecer la relación entre la conductividad y la densidad de estados de defecto o estados localizados en el gap del material. El análisis comparativo entre modelos, evidenció, que es posible obtener mejora hasta de un orden de magnitud en valores para cada uno de los parámetros hopping que caracterizan el material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study presents results on a developed methodology to characterize ground layers in Portuguese workshops. In this work a set of altarpieces of the 15th and 16th centuries, assigned to Coimbra painting workshop was studied, overall the masters Vicente Gil (doc. Coimbra 1498–1525), Manuel Vicente (doc. Coimbra 1521–1530) and Bernardo Manuel (act. c. 1559–94), father, son and grandson, encompassing from late gothic to mannerist periods. The aim of the study is to compare ground layers, fillers and binders of Coimbra workshop, and to correlate their characteristics to understand the technical evolution of this family of painters, using complementary microscopic techniques. The cross-sections from the groups of paintings were examined by optical microscopy and the results were integrated through the analysis obtained by μ-X–ray diffraction, scanning electron microscopy with energy dispersive X–ray Spectrometry, μ-confocal Raman and occasionally with μ-Fourier transform infrared spectroscopy imaging. Ground layers are of calcium sulfate, present as gesso grosso (mainly anhydrite with small amounts of gypsum) in the first and last phases of the workshop and gesso mate (mainly gypsum with small amounts of anhydrite) in an intermediate period. Binders have protein and oleic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis investigates the potential of photoactive organic semiconductors as a new class of materials for developing bioelectronic devices that can convert light into biological signals. The materials can be either small molecules or polymers. When these materials interact with aqueous biological fluids, they give rise to various electrochemical phenomena, including photofaradaic or photocapacitive processes, depending on whether photogenerated charges participate in redox processes or accumulate at an interface. The thesis starts by studying the behavior of the H2Pc/PTCDI molecular p/n thin-film heterojunction in contact with aqueous electrolyte. An equivalent circuit model is developed, explaining the measurements and predicting behavior in wireless mode. A systematic study on p-type polymeric thin-films is presented, comparing rr-P3HT with two low bandgap conjugated polymers: PBDB-T and PTB7. The results demonstrate that PTB7 has superior photocurrent performance due to more effective electron-transfer onto acceptor states in solution. Furthermore, the thesis addresses the issue of photovoltage generation for wireless photoelectrodes. An analytical model based on photoactivated charge-transfer across the organic-semiconductor/water interface is developed, explaining the large photovoltages observed for polymeric p-type semiconductor electrodes in water. Then, flash-precipitated nanoparticles made of the same three photoactive polymers are investigated, assessing the influence of fabrication parameters on the stability, structure, and energetics of the nanoparticles. Photocathodic current generation and consequent positive charge accumulation is also investigated. Additionally, newly developed porous P3HT thin-films are tested, showing that porosity increases both the photocurrent and the semiconductor/water interfacial capacity. Finally, the thesis demonstrates the biocompatibility of the materials in in-vitro experiments and shows safe levels of photoinduced intracellular ROS production with p-type polymeric thin-films and nanoparticles. The findings highlight the potential of photoactive organic semiconductors in the development of optobioelectronic devices, demonstrating their ability to convert light into biological signals and interface with biological fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis work aims to produce and test multilayer electrodes for their use as photocathode in a PEC device. The electrode developed is based on CIGS, a I-III-VI2 semiconductor material composed of copper (Cu), indium (In), Gallium (Ga) and selenium (Se). It has a bandgap in the range of 1.0-2.4 eV and an absorption coefficient of about 105cm−1, which makes it a promising photocathode for PEC water splitting. The idea of our multilayer electrode is to deposit a thin layer of CdS on top of CIGS to form a solid-state p–n junction and lead to more efficient charge separation. In addition another thin layer of AZO (Aluminum doped zinc oxide) is deposit on top of CdS since it would form a better alignment between the AZO/CdS/CIGS interfaces, which would help to drive the charge transport further and minimize charge recombination. Finally, a TiO2 layer on top of the electrodes is used as protective layer during the H2 evolution. FTO (Fluorine doped tin oxide) and Molybdenum are used as back-contact. We used the technique of RF magnetron sputtering to deposit the thin layers of material. The structural characterization performed by XDR measurement confirm a polycrystalline chalcopyrite structural with a preferential orientation along the (112) direction for the CIGS. From linear fit of the Tauc plot, we get an energy gap of about 1.16 eV. In addition, from a four points measurements, we get a resistivity of 0.26 Ωcm. We performed an electrochemical characterization in cell of our electrodes. The results show that our samples have a good stability but produce a photocurrent of the order of μA, three orders of magnitude smaller than our targets. The EIS analysis confirm a significant depletion of the species in front of the electrode causing a lower conversion of the species and less current flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spider venoms contain neurotoxic peptides aimed at paralyzing prey or for defense against predators; that is why they represent valuable tools for studies in neuroscience field. The present study aimed at identifying the process of internalization that occurs during the increased trafficking of vesicles caused by Phoneutria nigriventer spider venom (PNV)-induced blood-brain barrier (BBB) breakdown. Herein, we found that caveolin-1α is up-regulated in the cerebellar capillaries and Purkinje neurons of PNV-administered P14 (neonate) and 8- to 10-week-old (adult) rats. The white matter and granular layers were regions where caveolin-1α showed major upregulation. The variable age played a role in this effect. Caveolin-1 is the central protein that controls caveolae formation. Caveolar-specialized cholesterol- and sphingolipid-rich membrane sub-domains are involved in endocytosis, transcytosis, mechano-sensing, synapse formation and stabilization, signal transduction, intercellular communication, apoptosis, and various signaling events, including those related to calcium handling. PNV is extremely rich in neurotoxic peptides that affect glutamate handling and interferes with ion channels physiology. We suggest that the PNV-induced BBB opening is associated with a high expression of caveolae frame-forming caveolin-1α, and therefore in the process of internalization and enhanced transcytosis. Caveolin-1α up-regulation in Purkinje neurons could be related to a way of neurons to preserve, restore, and enhance function following PNV-induced excitotoxicity. The findings disclose interesting perspectives for further molecular studies of the interaction between PNV and caveolar specialized membrane domains. It proves PNV to be excellent tool for studies of transcytosis, the most common form of BBB-enhanced permeability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate whether altered occlusion affects both the condylar cartilage thickness and the cytokine levels of the TMJs of rats. Thirty adult-male rats (n=30) were randomly assigned to three experimental conditions: a control group that underwent sham operations with unaltered occlusion; an FPDM group that underwent functional posterior displacement of the mandible that was induced by an incisor guiding appliance; and an iOVD group in which the increased occlusal vertical dimension was induced in the molars. The rats were subjected to the FPDM or iOVD model for 14 days and then killed. Both the right and left TMJs were removed and randomly assigned to examination with staining or immunoassay techniques. Toluidine blue staining was used to measure the thicknesses of the four layers of the articular cartilage (i.e., the fibrous, proliferating, mature, and hypertrophic layers). ELISA assays were used to assess the concentrations of the pro-inflammatory cytokines IL-1α, IL-1β, IL-6, and tumour necrosis factor (TNF-α). The measurements of the articular cartilage layers and cytokine concentrations were analyzed with ANOVA and Tukey's tests and Kruskal-Wallis and Dunn tests, respectively (α=5%). The thickness of articular cartilage in the FPDM group (0.3±0.03mm) was significantly greater than those of the control (0.2±0.01mm) and iOVD (0.25±0.03mm) groups. No significant difference was observed between the control and iOVD groups. The four articular cartilage layers were thicker in the FPDM group than in the control and iOVD groups, and the latter two groups did not differ one from each other. Both the FPDM and iOVD groups exhibited higher cytokine levels than did the control (p<0.05) group. Compared to the FPDM group, the iOVD group exhibited significantly higher levels of IL-1β and TNF-α. Both models induced inflammation in the TMJ and caused significant structural changes in the TMJ and surrounding tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

TiO2 and TiO2/WO3 electrodes, irradiated by a solar simulator in configurations for heterogeneous photocatalysis (HP) and electrochemically-assisted HP (EHP), were used to remediate aqueous solutions containing 10 mg L(-1) (34 μmol L(-1)) of 17-α-ethinylestradiol (EE2), active component of most oral contraceptives. The photocatalysts consisted of 4.5 μm thick porous films of TiO2 and TiO2/WO3 (molar ratio W/Ti of 12%) deposited on transparent electrodes from aqueous suspensions of TiO2 particles and WO3 precursors, followed by thermal treatment at 450 (°)C. First, an energy diagram was organized with photoelectrochemical and UV-Vis absorption spectroscopy data and revealed that EE2 could be directly oxidized by the photogenerated holes at the semiconductor surfaces, considering the relative HOMO level for EE2 and the semiconductor valence band edges. Also, for the irradiated hybrid photocatalyst, electrons in TiO2 should be transferred to WO3 conduction band, while holes move toward TiO2 valence band, improving charge separation. The remediated EE2 solutions were analyzed by fluorescence, HPLC and total organic carbon measurements. As expected from the energy diagram, both photocatalysts promoted the EE2 oxidation in HP configuration; after 4 h, the EE2 concentration decayed to 6.2 mg L(-1) (35% of EE2 removal) with irradiated TiO2 while TiO2/WO3 electrode resulted in 45% EE2 removal. A higher performance was achieved in EHP systems, when a Pt wire was introduced as a counter-electrode and the photoelectrodes were biased at +0.7 V; then, the EE2 removal corresponded to 48 and 54% for the TiO2 and TiO2/WO3, respectively. The hybrid TiO2/WO3, when compared to TiO2 electrode, exhibited enhanced sunlight harvesting and improved separation of photogenerated charge carriers, resulting in higher performance for removing this contaminant of emerging concern from aqueous solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] is E, with the ketone moiety almost coplanar [C-C-C-C torsion angle = 9.5 (2)°] along with the phenyl ring [C-C-C-C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O-N-C-C = 4.2 (2)°], whereas the one in the ortho position is twisted [O-N-C-C = 138.28 (13)°]. The mol-ecules associate via C-H⋯O inter-actions, involving both O atoms from the 2-nitro group, to form a helical supra-molecular chain along [010]. Nitro-nitro N⋯O inter-actions [2.8461 (19) Å] connect the chains into layers that stack along [001].