972 resultados para record
Resumo:
Pollen data from a Levinson-Lessing Lake sediment core (74°28'N, 98°38'E) and Cape Sabler, Taymyr Lake permafrost sequences (74°33'N, 100°32'E) reveal substantial environmental changes on the northern Taymyr Peninsula during the last c. 32 000 14C years. The continuous records confirm that a scarce steppe-like vegetation with Poaceae, Artemisia and Cyperaceae dominated c. 32 000-10 300 14C yr BP, while tundra-like vegetation with Oxyria, Ranunculaceae and Caryophyllaceae grew in wetter areas. The coldest interval occurred c. 18 000 yr BP. Lateglacial pollen data show several warming events followed by a climate deterioration c. 10 500 14C yr BP, which may correspond with the Younger Dryas. The Late Pleistocene/Holocene transition, c. 10 300-10 000 14C yr BP, is characterized by a change from the herb-dominated vegetation to shrubby tundra with Betula sect. Nanae and Salix. Alnus fruticosa arrived locally c. 9000-8500 14C yr BP and disappeared c. 4000-3500 14C yr BP. Communities of Betula sect. Nanae, broadly distributed at c. 10 000-3500 14C yr BP, almost disappeared when vegetation became similar to the modern herb tundra after 3500-3000 14C yr BP. Quantitative climate reconstructions show Last Glacial Maximum summer temperature about 4°C below the present and Preboreal (c. 10 000 14C yr BP) temperature 2-4°C above the present. Maximum summer temperature occurred between 10 000 and 5500 14C yr BP; later summers were similar to present or slightly warmer.
Resumo:
Foraminiferal assemblage and stable isotopic data are presented for three Quaternary piston cores from Ulleung Basin, East Sea of Korea ((ESK) Japan Sea) near the Korean Peninsula. Major changes in both temperature and salinity strongly affected surface and deep waters of the ESK during the transition from the Last Glacial Maximum (LGM) to the middle Holocene. Local environmental effects dominated during the LGM and the Bølling/Allerød (B/A) when the ESK became semi-isolated from the Pacific Ocean. Regional/global influences dominated following the B/A, after sufficient reconnection with the Pacific. This is reflected in the foraminiferal d18O record which was largely salinity-controlled before the Younger Dryas (YD) and temperature-controlled after the YD. Paleoceanographic changes in the ESK during the last deglaciation reflect sequential reconnection with the Pacific Ocean, through gateways, first (B/A) in the north (Tsugaru Strait) and later (Holocene) in the south (Korea Strait).
Resumo:
The evolution of oceanic and climatic conditions the northeast Indian Ocean during the last 7 m.y. is revealed in the sediments from Site 758. We present detailed and continuous records of d18O and d13C from planktonic foraminifers, weight percent calcium carbonate, weight percent coarse fraction, magnetic susceptibility, and geomagnetic reversals. Sample spacing of the records ranges from 3 to 10 cm and is equivalent to an average time interval of 2000 to 6000 yr. Despite the fact that core recovery ranged between 100% and 105%, recovery gaps as large as 2.7 m occurred at nearly every break between advanced hydraulic piston cores. Approximately 12% of the late Neogene sequence was not recovered in each of the two holes drilled at Site 758. To circumvent the discontinuity introduced by the gaps, a composite depth section was constructed from multiple cores taken from offset holes at Site 758. The resulting composite depth section extends continuously from 0 to 116 mbsf, from the Holocene to the upper Miocene. A detailed chronostratigraphy is based on geomagnetic reversals which extend from the Brunhes Chron to Chron 6, and on d18O stages 1 through 105, which span from 0 to 2.5 Ma. The d18O record is dominated by a ~40-k.y. cycle in the late Pliocene and early Pleistocene, and is followed by a change to a ~100-k.y. cycle in the late Pleistocene. The mid-Pleistocene transition between these two modes of variability occurs between d18O stages 25 and 22 (between 860 and 800 Ka). Thirteen major volcanic ash horizons from the Indonesian arc are observed throughout the sedimentary section and are dated by their relative position within the geomagnetic reversals and the d18O chronostratigraphy. Since 5 Ma, there has been a long-term decline in weight percent CaCO3 and CaCO3 mass accumulation rates, and an associated rise in non-CaCO3 mass accumulation rates. We attribute these changes to a decrease in CaCO3 productivity and an increase in terrigenous sedimentation through enhanced riverine input. Such input may be linked to rapid tectonic uplift of the Himalayas and the Tibetan Plateau via mechanisms such as the intensification of the monsoonal rains, increased fluvial erosion, and regional glaciation. The long-term increase in percent coarse fraction since 5 Ma suggests a gradual increase in CaCO3 preservation. Higher frequency fluctuations in CaCO3 preservation are superimposed on the long-term trend and are related to climate fluctuations. The abrupt drop (-50%) in CaCO3 accumulation at 3.4 Ma signals a dramatic decrease in CaCO3 production that occurred over much of the Indian Ocean.
Resumo:
High-resolution sediment records from the South China Sea reveal a winter monsoon dominated glacial regime and a summer monsoon dominated Holocene regime during the last glacial cycle. A fundamental change between regimes occurred during deglaciation through a series of millennial reoccurrences of century-scale changes in the East Asian monsoon (EAM) climate. These abrupt events centered at 17.0, 15.9, 15.5, 14.7, 13.5, 13.9, 13.3, 12.1, 11.5, and 10.7 14C ka correlate well with the millennial-scale events in the Santa Barbara Basin and the Arabian Sea, i.e. a relationship between EAM and El Niño/Southern Oscillation systems. The abrupt increases in summer monsoon imply enhanced heat transport from low-latitude sea area to the midlatitude/high-latitude land area. The phase relationship between events of EAM and ice sheet may reflect a faster EAM response and a slower ice sheet response to the insolation change. A far-reaching conclusion is that the EAM might have triggered the Northern Hemisphere deglaciation.
Resumo:
A high-resolution multi-proxy record from Lake Van, eastern Anatolia, derived from a lacustrine sequence cored at the 357 m deep Ahlat Ridge (AR), allows a comprehensive view of paleoclimate and environmental history in the continental Near East during the last interglacial (LI). We combined paleovegetation (pollen), stable oxygen isotope (d18Obulk) and XRF data from the same sedimentary sequence, showing distinct variations during the period from 135 to 110 ka ago leading into and out of full interglacial conditions. The last interglacial plateau, as defined by the presence of thermophilous steppe-forest communities, lasted ca. 13.5 ka, from ~129.1-115.6 ka BP. The detailed palynological sequence at Lake Van documents a vegetation succession with several climatic phases: (I) the Pistacia zone (ca. 131.2-129.1 ka BP) indicates summer dryness and mild winter conditions during the initial warming, (II) the Quercus-Ulmus zone (ca. 129.1-127.2 ka BP) occurred during warm and humid climate conditions with enhanced evaporation, (III) the Carpinus zone (ca. 127.2-124.1 ka BP) suggest increasingly cooler and wetter conditions, and (IV) the expansion of Pinus at ~124.1 ka BP marks the onset of a colder/drier environment that extended into the interval of global ice growth. Pollen data suggest migration of thermophilous trees from refugial areas at the beginning of the last interglacial. Analogous to the current interglacial, the migration documents a time lag between the onset of climatic amelioration and the establishment of an oak steppe-forest, spanning 2.1 ka. Hence, the major difference between the last interglacial compared to the current interglacial (Holocene) is the abundance of Pinus as well as the decrease of deciduous broad-leaved trees, indicating higher continentality during the last interglacial. Finally, our results demonstrate intra-interglacial variability in the low mid-latitudes and suggest a close connection with the high-frequency climate variability recorded in Greenland ice cores.
Resumo:
We determined d18OCib values of live (Rose Bengal stained) and dead epibenthic foraminifera Cibicidoides wuellerstorfi, Cibicides lobatulus, and Cibicides refulgens in surface sediment samples from the Arctic Ocean and the Greenland, Iceland, and Norwegian seas (Nordic Sea). This is the first time that a comprehensive d18OCib data set is generated and compiled from the Arctic Ocean. For comparison, we defined Atlantic Water (AW), upper Arctic Bottom Water (uABW), and Arctic Bottom Water (ABW) by their temperature/salinity characteristics and calculated mean equilibrium calcite d18Oequ from summer sea-water d18Ow and in situ temperatures. As a result, in the Arctic environment we compensate for Cibicidoides- and Cibicides-specific offsets from equilibrium calcite of -0.35 and -0.55 per mil, respectively. After this taxon-specific adjustment, mean d18OCib values plausibly reflect the density stratification of principle water masses in the Nordic Sea and Arctic Ocean. In addition, mean d18OCib from AW not only significantly differs from mean d18OCib from ABW, but also d18OCib from within AW differentiates in function of provenience and water mass age. Furthermore, in shallow waters brine-derived low d18Ow can significantly lower the d18OCib of Cibicides spp. and thus d18OCib may serve as a paleobrine indicator. There is no statistically significant difference, however, between deeper water masses mean d18OCib of the Nordic Sea, and of the Eurasian and Amerasian basins, and no influence of low-d18Ow brines is recorded in Recent uABW and ABW d18OCib of C. wuellerstorfi. This may be due to dilution of a low-d18Ow brine signal in the deep sea, and/or to preferential incorporation of relatively high-d18Ow brines from high-salinity shelves. Although our data encompass environments with seasonal sea-ice and brine formation supposed to ultimately ventilate the deep Arctic Ocean, d18OCib from uABW and ABW do not indicate negative excursions. This may challenge hypotheses that call for enhanced Arctic brine release to explain negative benthic d18O spikes in deep-sea sediments from the late Pleistocene North Atlantic Ocean.
Resumo:
A Holocene pollen diagram from Kleiner Mochowsee (northern Niederlausitz, East Germany) shows pine as an important constituent of the woodland south of the Schwielochsee. Oak woodland was widespread since the Atlantic. Betula lost its importance at the end of the Preboreal. Fagus is represented continuously in the pollen record since the Atlantic, Carpinus since the Subboreal. However, the two latter tree species remain without great importance throughout the whole pollen record. The poor sandy soils are furthermore reflected by the low values of Corylus during the Boreal, comparable to other records from Berlin and its surrounding area. The 'classical' elm decline could be shown for the Niederlausitz, radiocarbon dates assume a contemporaneous age for this event with other records from northern Germany. Only small-scaled human impact is indicated in prehistoric times, during the migration period it seems to have ceased completely. Later, in the Medieval, deforestation and tillage can be shown. Secale was cultivated since the early Medieval; an accompanying weed flora appeared at the same time. Cultivation of Fagopyrum and Linum usitatissimum could be shown for the late Medieval times.
Resumo:
ODP Site 1237 and sediment core RRV9702a-69PC were investigated for siliciclastic grain-size distributions and changes in geochemical composition to reconstruct southeast trade-wind variability during the past 5 Ma. Because both, working and archive halves of all ODP Site 1237 cores were completely depleted between 3.3 and 8.1 meters composite depths, (mcd), the corresponding sections of pre-site survey core RRV9702A-69PC were sampled and investigated to fill the gap.
Resumo:
We generated benthic isotope records from Ocean Drilling Program (ODP) site 981 on the Feni drift (2173 m water depth) and from ODP site 983 on the Gardar drift (1983 m water depth) to examine the interaction between North Atlantic Deep Water (NADW) and Glacial North Atlantic Intermediate Water (GNAIW) formation from 2.0 to 1.4 Ma. We find NADW at both sites during interglacial periods, and a mix of NADW and Southern Ocean water at the Feini drift during most glacial periods. Prior to 1.7 Ma we find no evidence ofr GNAIW at the Gardar drift site. Instead, glacial Gardar drift delta13C values are as low or lower than values for all other sites in the North Atlantic and reflect continued glacial overflow from the Nordic seas. After 1.7 Ma Gardar drift delta13C values increase and suggest that there was GNAIW at the Gardar drift site during some glacial intervals. Overall, we find that NADW and GNAIW production changed around 1.7 Ma in concert with changes in sea surface temperature and salinity and in the Earth's obliquity cycle.
Resumo:
We present a reconstruction of El Niño Southern Oscillation (ENSO) variability spanning the Medieval Climate Anomaly (MCA, A.D. 800-1300) and the Little Ice Age (LIA, A.D. 1500-1850). Changes in ENSO are estimated by comparing the spread and symmetry of d18O values of individual specimens of the thermocline-dwelling planktonic foraminifer Pulleniatina obliquiloculata extracted from discrete time horizons of a sediment core collected in the Sulawesi Sea, at the edge of the western tropical Pacific warm pool. The spread of individual d18O values is interpreted to be a measure of the strength of both phases of ENSO while the symmetry of the d18O distributions is used to evaluate the relative strength/frequency of El Niño and La Niña events. In contrast to previous studies, we use robust and resistant statistics to quantify the spread and symmetry of the d18O distributions; an approach motivated by the relatively small sample size and the presence of outliers. Furthermore, we use a pseudo-proxy approach to investigate the effects of the different paleo-environmental factors on the statistics of the d18O distributions, which could bias the paleo-ENSO reconstruction. We find no systematic difference in the magnitude/strength of ENSO during the Northern Hemisphere MCA or LIA. However, our results suggest that ENSO during the MCA was skewed toward stronger/more frequent La Niña than El Niño, an observation consistent with the medieval megadroughts documented from sites in western North America.