951 resultados para quick response study
Resumo:
A proof-of-concept study was reported on analysis of antigen-antibody recognition based on resonant Rayleigh scattering response of single Au nanoparticles on a microimaging chamber. As benefited by a traditional dark-field microscope and a spectrograph, tiny 30 nm Au nanoparticles were effectively used as nanosensors to monitor changes in refractive index induced by every single binding of the adsorbates. The individual Au nanoparticles were observed with very high signal-to-noise ratio, and a LSPR ?max shift of about 2.5 nm accounting for the detection of PSA antigen with concentration as low as 0.1 pg ml-1 was recorded. This resulted in the successful demonstration of a non-labelling detection system for proteins as well as thousands of different chemical or biological species with possibility of miniaturization and multiplexing scheme.
Resumo:
Flattening filter free (FFF) linear accelerators allow for an increase in instantaneous dose-rate of the x-ray pulses by a factor of 2-6 over the conventional flattened output. As a result, radiobiological investigations are being carried out to determine the effect of these higher dose-rates on cell response. The studies reported thus far have presented conflicting results, highlighting the need for further investigation. To determine the radiobiological impact of the increased dose-rates from FFF exposures a Varian Truebeam medical linear accelerator was used to irradiate two human cancer cell lines in vitro, DU-145 prostate and H460 non-small cell lung, with both flattened and FFF 6 MV beams. The fluence profile of the FFF beam was modified using a custom-designed Nylon compensator to produce a similar dose profile to the flattened beam (6X) at the cell surface but at a higher instantaneous dose-rate. For both cell lines there appeared to be no significant change in cell survival. Curve fitting coefficients for DU145 cells irradiated with constant average dose-rates were 6X: alpha = 0.09 +/- 0.03, beta = 0.03 +/- 0.01 and 6FFF: alpha = 0.14 +/- 0.13, beta = 0.03 +/- 0.02 with a significance of p = 0.75. For H460 cells irradiated with the same instantaneous dose-rate but different average dose-rate the fit coefficients were 6FFF (low dose-rate): alpha = 0.21 +/- 0.11, 0.07 +/- 0.02 and 6FFF (high dose-rate): alpha = 0.21 +/- 0.16, 0.07 +/- 0.03, with p = 0.79. The results indicate that collective damage behaviour does not occur at the instantaneous dose-rates investigated here and that the use of either modality should result in the same clinical outcome, however this will require further validation in vivo.
Resumo:
Xie and colleagues previously isolated the Arabidopsis COI1 gene that is required for response to jasmonates (JAs), which regulate root growth, pollen fertility, wound healing, and defense against insects and pathogens. In this study, we demonstrate that COI1 associates physically with AtCUL1, AtRbx1, and either of the Arabidopsis Skp1-like proteins ASK1 or ASK2 to assemble ubiquitin-ligase complexes, which we have designated SCF(COI1). COI1(E22A), a single amino acid substitution in the F-box motif of COI1, abolishes the formation of the SCF(COI1) complexes and results in loss of the JA response. AtRbx1 double-stranded RNA-mediated genetic interference reduces AtRbx1 expression and affects JA-inducible gene expression. Furthermore, we show that the AtCUL1 component of SCF(COI1) complexes is modified in planta, where mutations in AXR1 decrease the abundance of the modified AtCUL1 of SCF(COI1) and lead to a reduction in JA response. Finally, we demonstrate that the axr1 and coi1 mutations display a synergistic genetic interaction in the double mutant. These results suggest that the COI1-mediated JA response is dependent on the SCF(COI1) complexes in Arabidopsis and that the AXR1-dependent modification of the AtCUL1 subunit of SCF(COI1) complexes is important for JA signaling.
Resumo:
Background: Natural Killer Cells (NK) play an important role in detection and elimination of virus-infected, damaged or cancer cells. NK cell function is guided by expression of Killer Immunoglobulin-like Receptors (KIRs) and contributed to by the cytokine milieu. KIR molecules are grouped on NK cells into stimulatory and inhibitory KIR haplotypes A and B, through which NKs sense and tolerate HLA self-antigens or up-regulate the NK-cytotoxic response to cells with altered HLA self-antigens, damaged by viruses or tumours. We have previously described increased numbers of NK and NK-related subsets in association with sIL-2R cytokine serum levels in BELFAST octo/nonagenarians. We hypothesised that changes in KIR A and B haplotype gene frequencies could explain the increased cytokine profiles and NK compartments previously described in Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) octo/nonagenarians, who show evidence of ageing well.
Results: In the BELFAST study, 24% of octo/nonagenarians carried the KIR A haplotype and 76% KIR B haplotype with no differences for KIR A haplogroup frequency between male or female subjects (23% v 24%; p=0.88) or for KIR B haplogroup (77% v 76%; p=0.99). Octo/nonagenarian KIR A haplotype carriers showed increased NK numbers and percentage compared to Group B KIR subjects (p=0.003; p=0.016 respectively). There were no KIR A/ B haplogroup-associated changes for related CD57+CD8 (high or low) subsets. Using logistic regression, KIR B carriers were predicted to have higher IL-12 cytokine levels compared to KIR A carriers by about 3% (OR 1.03, confidence limits CI 0.99–1.09; p=0.027) and 14% higher levels for TGF-ß (active), a cytokine with an anti-inflammatory role, (OR 1.14, confidence limits CI 0.99–1.09; p=0.002).
Conclusion: In this observational study, BELFAST octo/nonagenarians carrying KIR A haplotype showed higher NK cell numbers and percentage compared to KIR B carriers. Conversely, KIR B haplotype carriers, with genes encoding for activating KIRs, showed a tendency for higher serum pro-inflammatory cytokines compared to KIR A carriers. While the findings in this study should be considered exploratory they may serve to stimulate debate about the immune signatures of those who appear to age slowly and who represent a model for good quality survivor-hood.© 2013 Rea et al.; licensee BioMed Central Ltd.
Resumo:
Radionuclide therapy for cancer is undergoing a renaissance, with a wide range of radionuclide and clinical delivery systems currently under investigation. Dosimetry at the cellular and sub-cellular level is complex with inhomogeneity and incomplete targeting of all cells such that some tumor cells will receive little or no direct radiation energy. There is now sufficient preclinical evidence of a Bystander response which can modulate the biology of these un-irradiated cells with current research demonstrating both protective and inhibitory responses. Dependence upon fraction of irradiated cells has also been found and the presence of functional gap junctions appears to be import for several Bystander responses. The selection of either high or low LET radionuclides may be critical. While low LET radionuclides appear to have a Bystander response proportional to dose, the dose-response from high LET radionuclides are more complex. In media transfer experiments a "U" shaped response curve has been demonstrated for high LET treatments. However this "U" shaped response has not been seen with co-culture experiments and its relevance remains uncertain. For high LET treatments there is a suggestion that dose rate effects may also be important with inhibitory effects noted with 125I labelling study and a stimulatory seen with 123I labelling in one study.© 2013 Brady, O’Sullivan and Prise.
Resumo:
An experimental model of quinine induced blindness is presented. Electrophysiological, angiographical and morphological examinations were made. The occurrence of blindness and any recovery from blindness was dependent upon the dose of quinine taken. As no evidence of acute retinal ischaemia was found it is concluded that quinine is retinotoxic.