958 resultados para predatory mites
Resumo:
Seven species of eriophyoid mites (Acari: Eriophyoidea) are known to attack sugarcane plants (Saccharum spp., Poaceae) and related grasses in various parts of the world, but except for unconfirmed reports of Aceria sacchari and Abacarus sacchari, Australia had been thought to be free of these pests. Herein, Abacarus queenslandiensis n. sp. (Eriophyidae), vagrant on leaf surfaces of sugarcane in Australia, is described. Also, Cathetacarus n. gen. is erected for the distinctive mite, Catarhinus spontaneae Mohanasundaram, 1984. In addition, a key to the eriophyoid mites known to occur on sugarcane plants in the world is given.
Resumo:
We describe the diversity of aquatic invertebrates colonising water-filled final voids produced by an open-cut coal mine near Moura, central Queensland. Ten disused pits that had been filled with water from < 1 year to 22 years prior to the survey and three nearby 'natural' water bodies were sampled in December 1998 and again in March 1999. All invertebrates collected were identified to family with the exception of oligochaetes, cladocerans, ostracods and copepods, which were identified to these coarser taxonomic levels. Sixty-two taxa were recorded from > 20 000 individuals. The greatest familial richness was displayed by the Insecta (33 families) followed by the mites (Acari) with 12 families. While natural water bodies held the greatest diversity, several mine pits were almost as rich in families. Classification analyses showed that natural sites tended to cluster together, but the groupings did not clearly exclude pit sites. Mining pits that supported higher diversity tended to be older and had lower salinity (< 2000 mu S/cm); however, salinity in all water bodies varied with rainfall conditions. We conclude that ponds formed in final voids at this mine have the potential to provide habitat for many invertebrate taxa typical of lentic inland water bodies in central Queensland.
Resumo:
It has been suggested that timber plantations could play an important role in the conservation of biodiversity in cleared rainforest landscapes, not only because of their potential to cost-effectively reforest large areas of land, but also because they may provide habitat for rainforest plants and animals. However, this last claim is largely untested. In this study, we surveyed the occurrence of a range of animal taxa in monoculture and mixed species timber plantations and restoration plantings in tropical and subtropical Australia. We used the richness of ‘rainforest-dependent’ taxa (i.e., birds, lizards and mites associated with rainforest habitats) in reforested sites as our measure of their ‘biodiversity value’. We also examined whether the biodiversity value of reforested sites was correlated with habitat attributes, including plant species richness and vegetation structure and, further, whether biodiversity value was affected by the proximity of reforested sites to intact rainforest.
Resumo:
Il presente lavoro ha lo scopo di comprendere i processi sottesi ai pattern di coesistenza tra le specie di invertebrati sorgentizi, distinguendo tra dinamiche stocastiche e deterministiche. Le sorgenti sono ecosistemi complessi e alcune loro caratteristiche (ad esempio l’insularità, la stabilità termica, la struttura ecotonale “a mosaico”, la frequente presenza di specie rare ed endemiche, o l’elevata diversità in taxa) le rendono laboratori naturali utili allo studio dei processi ecologici, tra cui i processi di assembly. Al fine di studiare queste dinamiche è necessario un approccio multi-scala, per questo motivi sono state prese in considerazione tre scale spaziali. A scala locale è stato compiuto un campionamento stagionale su sette sorgenti (quattro temporanee e tre permanenti) del Monte Prinzera, un affioramento ofiolitico vicino alla città di Parma. In questa area sono stati valutati l’efficacia e l’impatto ambientale di diversi metodi di campionamento e sono stati analizzati i drivers ecologici che influenzano le comunità. A scala più ampia sono state campionate per due volte 15 sorgenti della regione Emilia Romagna, al fine di identificare il ruolo della dispersione e la possibile presenza di un effetto di niche-filtering. A scala continentale sono state raccolte informazioni di letteratura riguardanti sorgenti dell’area Paleartica occidentale, e sono stati studiati i pattern biogeografici e l’influenza dei fattori climatici sulle comunità. Sono stati presi in considerazione differenti taxa di invertebrati (macroinvertebrati, ostracodi, acari acquatici e copepodi), scegliendo tra quelli che si prestavano meglio allo studio dei diversi processi in base alle loro caratteristiche biologiche e all’approfondimento tassonomico raggiungibile. I campionamenti biologici in sorgente sono caratterizzati da diversi problemi metodologici e possono causare impatti sugli ambienti. In questo lavoro sono stati paragonati due diversi metodi: l’utilizzo del retino con un approccio multi-habitat proporzionale e l’uso combinato di trappole e lavaggio di campioni di vegetazione. Il retino fornisce dati più accurati e completi, ma anche significativi disturbi sulle componenti biotiche e abiotiche delle sorgenti. Questo metodo è quindi raccomandato solo se il campionamento ha come scopo un’approfondita analisi della biodiversità. D’altra parte l’uso delle trappole e il lavaggio della vegetazione sono metodi affidabili che presentano minori impatti sull’ecosistema, quindi sono adatti a studi ecologici finalizzati all’analisi della struttura delle comunità. Questo lavoro ha confermato che i processi niche-based sono determinanti nello strutturare le comunità di ambienti sorgentizi, e che i driver ambientali spiegano una rilevante percentuale della variabilità delle comunità. Infatti le comunità di invertebrati del Monte Prinzera sono influenzate da fattori legati al chimismo delle acque, alla composizione e all’eterogeneità dell’habitat, all’idroperiodo e alle fluttuazioni della portata. Le sorgenti permanenti mostrano variazioni stagionali per quanto riguarda le concentrazioni dei principali ioni, mentre la conduttività, il pH e la temperatura dell’acqua sono più stabili. È probabile che sia la stabilità termica di questi ambienti a spiegare l’assenza di variazioni stagionali nella struttura delle comunità di macroinvertebrati. L’azione di niche-filtering delle sorgenti è stata analizzata tramite lo studio della diversità funzionale delle comunità di ostracodi dell’Emilia-Romagna. Le sorgenti ospitano più del 50% del pool di specie regionale, e numerose specie sono state rinvenute esclusivamente in questi habitat. Questo è il primo studio che analizza la diversità funzionale degli ostracodi, è stato quindi necessario stilare una lista di tratti funzionali. Analizzando il pool di specie regionale, la diversità funzionale nelle sorgenti non è significativamente diversa da quella misurata in comunità assemblate in maniera casuale. Le sorgenti non limitano quindi la diversità funzionale tra specie coesistenti, ma si può concludere che, data la soddisfazione delle esigenze ecologiche delle diverse specie, i processi di assembly in sorgente potrebbero essere influenzati da fattori stocastici come la dispersione, la speciazione e le estinzioni locali. In aggiunta, tutte le comunità studiate presentano pattern spaziali riconoscibili, rivelando una limitazione della dispersione tra le sorgenti, almeno per alcuni taxa. Il caratteristico isolamento delle sorgenti potrebbe essere la causa di questa limitazione, influenzando maggiormente i taxa a dispersione passiva rispetto a quelli a dispersione attiva. In ogni caso nelle comunità emiliano-romagnole i fattori spaziali spiegano solo una ridotta percentuale della variabilità biologica totale, mentre tutte le comunità risultano influenzate maggiormente dalle variabili ambientali. Il controllo ambientale è quindi prevalente rispetto a quello attuato dai fattori spaziali. Questo risultato dimostra che, nonostante le dinamiche stocastiche siano importanti in tutte le comunità studiate, a questa scala spaziale i fattori deterministici ricoprono un ruolo prevalente. I processi stocastici diventano più influenti invece nei climi aridi, dove il disturbo collegato ai frequenti eventi di disseccamento delle sorgenti provoca una dinamica source-sink tra le diverse comunità. Si è infatti notato che la variabilità spiegata dai fattori ambientali diminuisce all’aumentare dell’aridità del clima. Disturbi frequenti potrebbero provocare estinzioni locali seguite da ricolonizzazioni di specie provenienti dai siti vicini, riducendo la corrispondenza tra gli organismi e le loro richieste ambientali e quindi diminuendo la quantità di variabilità spiegata dai fattori ambientali. Si può quindi concludere che processi deterministici e stocastici non si escludono mutualmente, ma contribuiscono contemporaneamente a strutturare le comunità di invertebrati sorgentizi. Infine, a scala continentale, le comunità di ostracodi sorgentizi mostrano chiari pattern biogeografici e sono organizzate lungo gradienti ambientali principalmente collegati altitudine, latitudine, temperatura dell’acqua e conducibilità. Anche la tipologia di sorgente (elocrena, reocrena o limnocrena) è influente sulla composizione delle comunità. La presenza di specie rare ed endemiche inoltre caratterizza specifiche regioni geografiche.
Resumo:
Entrepreneurs in emerging market economies operate in weak institutional contexts, which can imply different types of government. In some countries (e.g., Russia), the government is predatory, and the main risk faced by (successful) entrepreneurs relates to expropriation. In other countries (like China) this kind of risk is lower; nevertheless the government is intrusive, and the rules of the game remain fluid. The implication of the latter for entrepreneurs is that they are more likely to spend time and resources on influence (rent seeking) activities rather than on productive activities.We illustrate this type of government by focusing on the distribution of subsidies in China.We present a simple formalmodel that explores not only the direct effects of rent seeking for a company but also externalities under a situation of policy-generated uncertainty in the distribution of subsidies.We explore how these effects differ for the entrepreneurial sector (young, private and small companies) compared with other sectors. We posit that while the performance of private companies is more affected than the performance of state firms, the impact of government-induced uncertainty on young and small companies is actually less pronounced. Our empirical analysis, based on a unique large dataset of 2.4 million observations on Chinese companies, takes advantage of the regional and sectoral heterogeneity of China for empirical tests.
Resumo:
Several methods and indicators can be used to evaluate the coenological state of a given habitat, the ones which can be created simply, quickly, standardizably and reliably and which can be used to exactly quantify the state of a given habitat in point of numbers can be of outstanding practical importance in ecology. One possible method is the examination of the genera which can be found in a given habitat in great abundance and have little number of species and various ecological characteristics. For this purpose one of the most appropriate groups is that of ground-dwelling oribatid mites (Acari: Oribatida). In our research, joining the bioindication methodological project of the “Adaptation to Climate Change” Research Group of the Hungarian Academy of Sciences, the indication strength of genus-level taxon lists and the effects of the main pattern-generating factors creating similarity patterns were analysed with the help of data series on oribatid mites collected by us and originating from literature. Our aim was to develop a method with the help of which the difference expressed with distance functions between two oribatid mite genus lists originating from any sources can correspond to spatial and temporal scales. Our results prove that these genus lists are able to express the spatial distance of the habitats. With the help of this base of comparison changes in disturbed or transformed habitats can be expressed by means of oribatid mite communities, with spatial and temporal distances.
Resumo:
Oribatid mites are one of the most abundant groups of the ground-dwelling mesofauna. They can be found in almost every terrestrial habitat all over the world and they are characterized by great species richness and great number of individuals. In spite of that not enough is known about their behaviour on community level and their spatial and temporal pattern in different habitats of the world. In our present study the seasonal behaviour of oribatid mite communities was analysed in three types of microhabitats in a temperate deciduous forest: in leaf litter, soil and moss. Samples were collected at a given site in a year and a half and the oribatid mite communities living there were studied on genus level along with the changes of meteorological factors characteristic of the area. The results show that corresponding to similar previous researches, the communities in our study do not have a seasonally changing, returning pattern either. Based on this, we can conclude that climatic differences and differences in other seasonally changing factors between the seasons do not have a significant role in the annual change of communities. Besides that we discovered that the communities of the three microhabitats are not completely the same. It is the oribatid mite community of the moss which differs mostly from communities in the leaf litter and in the soil. Our study calls attention among others to the fact that compositional changes of the oribatid mite communities living all over the world and their causes are unclear to date.
Resumo:
This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with sampling period. Survival exceeded 80%. Growth varied with season and hydroperiod, with greatest growth in short-hydroperiod marshes. The results suggest that dietary bioaccumulation determined mercury levels in Everglades aquatic animals, and that, although hydroperiod affected mercury uptake, its effect varied with season. ^
Resumo:
The major objective of this study was to determine the relative importance of landscape factors, local abiotic factors, and biotic interactions in influencing tadpole community structure in temporary wetlands. I also examined the influence of agricultural activities in South-central Florida by comparing tadpole communities in native prairie wetlands (a relatively unmodified habitat) at the Kissimmee Prairie Sanctuary (KPS) to tadpole communities in three agriculturally modified habitats found at MacArthur Agro-Ecology Research Center (MAERC). Environmental characteristics were measured in 24 isolated wetlands, and tadpoles were sampled using throw-traps and dipnets during the 1999 wet season (June–October). Landscape characteristics were expected to predominately influence all aspects of community structure because anurans associated with temporary wetland systems are likely to exist as metapopulations. Both landscape characteristics (wetland proximity to nearest woodland and the amount of woodland surrounding the wetland) and biotic interactions (fish predation) had the largest influence on tadpole community structure. Predatory fish influenced tadpole communities more than expected due to the ubiquity of wetlands, lack of topographic relief, and dispersal abilities of several fish species. Differences in tadpole community structure among habitat types were attributed to differences in woodland attributes and susceptibility to fish colonization. Furthermore, agricultural modification of prairie habitats in South-central Florida may benefit amphibian communities, particularly woodland-dwelling species that are unable to coexist with predatory fish. From a conservation standpoint, temporary wetlands proximal to woodland areas and isolated from permanent water sources appear to be most important to amphibians. In addition, the high tadpole densities attained in these wetlands suggest that these wetlands serve as biological hotspots within the landscape, and their benefits extend into the adjacent terrestrial matrix. Further research efforts are needed to quantify the biological productivity of these systems and determine spatial dynamics of anurans in surrounding terrestrial habitats. ^
Resumo:
Chemical defenses are common among organisms and represent some of the most complex adaptations for avoiding predation, yet our understanding of the ecological nature of these systems remains incomplete. Poison frogs are a group of chemically defended organisms that are dependent entirely on diet for chemical defense. In this study, I identified the dietary arthropods responsible for chemical defense in poison frogs, described spatial and temporal patterns in alkaloid composition of poison frogs, and established links between patterns of variation in alkaloid defense and arthropod diet in poison frogs. Identifying dietary sources and studying patterns of variation in alkaloid composition is fundamental to understanding the ecology and evolution of chemical defense in poison frogs. ^ The dendrobatid poison frog Oophaga pumilio shares many alkaloids in common with other poison frogs and is known to vary in alkaloid composition throughout its geographic range. I designed my dissertation to take advantage of these characteristics and use O. pumilio as a model species for the study of chemical defense in poison frogs. Here, I identified siphonotid millipedes as a source for spiropyrrolizidine alkaloids, formicine ants as a source for pumiliotoxin alkaloids, and oribatid mites as dietary sources for the majority of alkaloids found in poison frogs. I found that alkaloid composition varied spatially and temporally, on both small and large scales, within and among populations of O. pumilio. Alkaloid variation between populations was related to geographic distance, and closer populations tended to have alkaloid compositions more similar to each other than to distant populations. ^ The findings of my study suggest that oribatid mites are the most important dietary source of alkaloids in poison frogs. However, overall alkaloid defense in poison frogs is based on a combination of dietary arthropods, including mites, ants, millipedes, and beetles. Variation in chemical defenses of poison frogs is due to (1) spatial and temporal differences in the presence of alkaloids in certain arthropods and (2) differences in the availability of certain alkaloid-containing arthropods, which are likely the result of differences as well as successional changes in forest structure among locations and through time. ^
Resumo:
Anthropogenic alterations of natural hydrology are common in wetlands and often increase water permanence, converting ephemeral habitats into permanent ones. Since aquatic organisms segregate strongly along hydroperiod gradients, added water permanence caused by canals can dramatically change the structure of aquatic communities. We examined the impact of canals on the abundance and structure of wetland communities in South Florida, USA. We sampled fishes and macroinvertebrates from marsh transects originating at canals in the central and southern Everglades. Density of all aquatic organisms sampled increased in the immediate proximity of canals, but was accompanied by few compositional changes based on analysis of relative abundance. Large fish (>8 cm), small fish (<8 >cm) and macroinvertebrates (>5 mm) increased in density within 5 m of canals. This pattern was most pronounced in the dry season, suggesting that canals may serve as dry-down refugia. Increases in aquatic animal density closely matched gradients of phosphorus enrichment that decreased with distance from canals. Thus, the most apparent impact of canals on adjacent marsh communities was as conduits for nutrients that stimulated local productivity; any impact of their role as sources of increased sources of predators was not apparent. The effect of predation close to canals was overcompensated by increased secondary productivity and/or immigration toward areas adjacent to canals in the dry season. Alternatively, the consumptive effect of predatory fishes using canals as dry-season refuges is very small or spread over the expanse of marshes with open access to canals.
Resumo:
Novel predator introductions are thought to have a high impact on native prey, especially in freshwater systems. Prey may fail to recognize predators as a threat, or show inappropriate or ineffective responses. The ability of prey to recognize and respond appropriately to novel predators may depend on the prey’s use of general or specific cues to detect predation threats.We used laboratory experiments to examine the ability of three native Everglades prey species (Eastern mosquitofish, flagfish and riverine grass shrimp) to respond to the presence, as well as to the chemical and visual cues of a native predator (warmouth) and a recentlyintroduced non-native predator (African jewelfish). We used prey from populations that had not previously encountered jewelfish. Despite this novelty, the native warmouth and nonnative jewelfish had overall similar predatory effects, except on mosquitofish, which suffered higher warmouth predation. When predators were present, the three prey taxa showed consistent and strong responses to the non-native jewelfish, which were similar in magnitude to the responses exhibited to the native warmouth. When cues were presented, fish prey responded largely to chemical cues, while shrimp showed no response to either chemical or visual cues. Overall, responses by mosquitofish and flagfish to chemical cues indicated low differentiation among cue types, with similar responses to general and specific cues. The fact that antipredator behaviours were similar toward native and non-native predators suggests that the susceptibility to a novel fish predator may be similar to that of native fishes, and prey may overcome predator novelty, at least when predators are confamilial to other common and longer-established non-native threats.