972 resultados para pore solution chemistry
Resumo:
We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The substituted cysteine accessibility method was used to probe the surface exposure of a pore-lining threonine residue (T6’) common to both the glycine receptor (GlyR) and GABAA receptor (GABAAR) chloride channels. This residue lies close to the channel activation gate, the ionic selectivity filter and the main pore blocker binding site. Recent studies have suggested that the GlyRs and GABAARs have divergent open state pore structures at the 6’ position. When both the human a1T6’C homomeric GlyR and the rat a1T6’Cb1T6’C heteromeric GABAAR were expressed in HEK293 cells, their 6’ residue surface accessibilities differed significantly in the closed state. However, when a soluble cysteine-modifying compound was applied in the presence of saturating agonist concentrations, both receptors were locked into the open state. This action was not induced by oxidising agents in either receptor. These results provide evidence for a conserved pore opening mechanism in anion-selective members of the ligand-gated ion channel family. The results also indicate that the GABAAR pore structure at the 6’ level may vary between different expression systems.
Resumo:
For many years proof that the hypoxic nature of malignant tumours can be used to selectively target anticancer drugs has been sought. Several classes of potential redox activated anticancer drugs have been developed to take advantage of the reducing environment resulting from the hypoxia. Drug complexes with redox active metal centres as carriers have been investigated, but have largely been employed with cytotoxic drugs that require release of the drug intracellularly, complicating the design of such complexes. MMP inhibitors, a new class of anticancer drug, conversely act in the extracellular environment and we have investigated inhibitor complexes with several redox active transition metals. Marimastat is an MMP inhibitor with potent in-vitro antimetastatic activity and was recently in Phase III clinical trials for a variety of cancer types. We have synthesised a Co(II1) complex of marimastat incorporating the tetradentate ligand tpa (tris(2-methylpyridyl)amine) as a carrier ligand. The complex was structurally characterised in the solid state by single crystal X-ray diffraction, the first example of a crystal structure containing marimastat. 2D COSY and NOESY NMR spectra showed that the complex exists in two isomeric forms in solution, corresponding to the cis and trans isomers yet only crystallises in one of these forms. Biological testing of the complex in mice with 4T1.2 tumours showed interesting and unexpected outcomes. Initial results of the tumour growth inhibition study showed that a significant inhibition of growth was exhibited by the complex over the free inhibitor and the control. However, the metastatic potential of both free marimastat and the complex were higher than the control indicating likely problems with the experimental protocol. Further experiments are needed to determine the potential of such complexes as hypoxia activated prodrugs but there appears at least to be some promise.
Resumo:
The amount of crystalline fraction present in monohydrate glucose crystal-solution mixture up to 110% crystal in relation to solution (crystal:solution=110:100) was determined by water activity measurement. It was found that the water activity had a strong linear correlation (R-2=0.994) with the amount of glucose present above saturation. Difference in the water activities of the crystal-solution mixture (a(w1)) and the supersaturated solution (a(w2)) by re-dissolving the crystalline fraction allowed calculation of the amount of crystalline phase present (DeltaG) in the mixture by an equation DeltaG=846.97(a(w1)-a(w2)). Other methods such as Raoult's, Norrish and Money-Born equations were also tested for the prediction of water activity of supersaturated glucose solution. (C) 2003 Swiss Society of Food Science and Technology. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Electron spin transient nutation (ESTN) experiments show that the spin multiplicity of the ground state of C-60(3-) in frozen solution is a doublet with S = 1/2. In purified samples, there is no evidence for excited states or other species with higher multiplicity. In the anions Of C120On- (n = 2, 3, 4), where the CW EPR experiments have shown that a mixture of species is present, ESTN experiments confirm that a doublet with S = 1/2 is associated with the 3- anion and triplets with S = 1 are associated with the 2- and 4- anions. A weak nutation peak attributable to m(s) = -1/2 1/2 transitions within a quartet state may arise from association of anions with spins of 1/2 and 1 in solute aggregates.
Resumo:
Exact analytical solutions of the critical Rayleigh numbers have been obtained for a hydrothermal system consisting of a horizontal porous layer with temperature-dependent viscosity. The boundary conditions considered are constant temperature and zero vertical Darcy velocity at both the top and bottom of the layer. Not only can the derived analytical solutions be readily used to examine the effect of the temperature-dependent viscosity on the temperature-gradient driven convective flow, but also they can be used to validate the numerical methods such as the finite-element method and finite-difference method for dealing with the same kind of problem. The related analytical and numerical results demonstrated that the temperature-dependent viscosity destabilizes the temperature-gradient driven convective flow and therefore, may affect the ore body formation and mineralization in the upper crust of the Earth. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Stability of matchings was proved to be a new cooperative equilibrium concept in Sotomayor (Dynamics and equilibrium: essays in honor to D. Gale, 1992). That paper introduces the innovation of treating as multi-dimensional the payoff of a player with a quota greater than one. This is done for the many-to-many matching model with additively separable utilities, for which the stability concept is defined. It is then proved, via linear programming, that the set of stable outcomes is nonempty and it may be strictly bigger than the set of dual solutions and strictly smaller than the core. The present paper defines a general concept of stability and shows that this concept is a natural solution concept, stronger than the core concept, for a much more general coalitional game than a matching game. Instead of mutual agreements inside partnerships, the players are allowed to make collective agreements inside coalitions of any size and to distribute his labor among them. A collective agreement determines the level of labor at which the coalition operates and the division, among its members, of the income generated by the coalition. An allocation specifies a set of collective agreements for each player.
Resumo:
In a decentralized setting the game-theoretical predictions are that only strong blockings are allowed to rupture the structure of a matching. This paper argues that, under indifferences, also weak blockings should be considered when these blockings come from the grand coalition. This solution concept requires stability plus Pareto optimality. A characterization of the set of Pareto-stable matchings for the roommate and the marriage models is provided in terms of individually rational matchings whose blocking pairs, if any, are formed with unmatched agents. These matchings always exist and give an economic intuition on how blocking can be done by non-trading agents, so that the transactions need not be undone as agents reach the set of stable matchings. Some properties of the Pareto-stable matchings shared by the Marriage and Roommate models are obtained.
Resumo:
alpha-Conotoxins that target the neuronal nicotinic acetylcholine receptor have a range of potential therapeutic applications and are valuable probes for examining receptor subtype selectivity. The three-dimensional structures of about half of the known neuronal specific alpha-conotoxins have now been determined and have a consensus fold containing a helical region braced by two conserved disulfide bonds. These disulfide bonds define the two-loop framework characteristic for alpha-conotoxins, CCXmCXnC, where loop 1 comprises four residues (m = 4) and loop 2 between three and seven residues (n = 3, 6 or 7). Structural studies, particularly using NMR spectroscopy have provided an insight into the role and spatial location of residues implicated in receptor binding and biological activity.
Resumo:
We present an electronic model with long range interactions. Through the quantum inverse scattering method, integrability of the model is established using a one-parameter family of typical irreducible representations of gl(211). The eigenvalues of the conserved operators are derived in terms of the Bethe ansatz, from which the energy eigenvalues of the Hamiltonian are obtained.
Resumo:
Pt-Sn electrocatalysts of different compositions were prepared and dispersed on carbon Vulcan XC-72 using the Pechini-Adams method. The catalysts were characterized by energy dispersive X-ray analysis and X-ray diffraction. The electrochemical properties of these electrode materials were also examined by cyclic voltammetry and chronoamperometric experiments in acid medium. The results showed that the presence of Sn greatly enhances the activity of Pt towards the electrooxidation of ethanol. Moreover, it contributes to reduce the amount of noble metal in the anode of direct alcohol fuel cells, which remains one of the challenges to make the technology of direct alcohol fuel cells possible. Electrolysis of ethanol solutions at 0.55 V vs. RHE allowed to determine by liquid chromatography acetaldehyde and acetic acid as the main reaction products. CO(2) was also analyzed after trapping it in a NaOH solution indicating that the cleavage of the C-C bond in the ethanol molecule did occur during the adsorption process. In situ IR reflectance spectroscopy helped to investigate in more details the reaction mechanism through the identification of the reaction products as well as the presence of some intermediate adsorbed species, such as linearly bonded carbon monoxide. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Poly(pyrrole) (PPY) coating was prepared on a stainless-steel (SS) wire for solid-phase microextraction (SPME) by electrochemical deposition (cyclic voltammetric). The PPY was evaluated by analyzing new-generation antidepressants (mirtazapine, citalopram, paroxetine, duloxetine, fluoxetine, and sertraline) in plasma sample by SPME and liquid chromatography with UV detection (LC-UV). The effect of electrolyte Solution (lithium perchlorate or tetrabutylammonium perchlorate) and the number of cycles (50, 100 or 200) applied during the polymerization process on the SPME performance was evaluated. Important factors in the optimization of SPME efficiency such as extraction time, temperature, pH, influence of plasma proteins on sorption mechanisms, and desorption conditions are discussed. The SPME-PPY/LC method showed to be linear in concentrations ranging from the limit of quantification (LOQ) to 1200 ng mL(-1). The LOQ values range from 16 to 25 ng mL-1. The inter-day precision of the SPME-PPY/LC method presented coefficient of variation (CV) lower than 15%. Based on analytical validation results, the SPME-PPY/LC methodology showed to be adequate for antidepressant analysis, from therapeutic to toxic levels. In order to evaluate the proposed method for clinical use, the SPME-PPY/LC method was applied to the analysis of plasma samples from elderly depressed patients. (c) 2009 Elsevier B.V. All rights reserved,
Resumo:
The electronic absorption spectrum of fac[Mn(CO)(3)(phen)imH](+), fac-1 in CH(2)Cl(2) is characterized by a strong absorption band at 378 nm (epsilon(max) = 3200 mol(-1) L cm(-1)). On the basis of quantum mechanical calculations, the visible absorption band has been assigned to ligand-to-ligand charge-transfer (LLCT, im -> phen) and metal-to-ligand charge-transfer (MLCT, Mn -> phen) charge transfer transition. When fac-1 in CH(2)Cl(2) is irradiated with 350 nm continuous light, the absorption features are gradually shifted to represent those of the meridional complex mer-[Mn(CO)(3)(phen)imH](+), mer-1 (lambda(max) = 556 nm). The net photoreaction under these conditions is a photoisomerization, although, the presence of the long-lived radical species was also detected by (1)H NMR and FTIR spectroscopy. 355 nm continuous photolysis of fac-1 in CH(3)CN solution also gives the long-lived intermediate which is readly trapped by metylviologen (MV(2+)) giving rise to the formation of the one-electron reduced methyl viologen (MV(center dot+)). The UV-vis spectra monitored during the slow (45 min) thermal back reaction exhibited isosbestic conversion at 426 nm. On the basis of spectroscopic techniques and quantum mechanical calculations, the role of the radicals produced is analyzed.
Resumo:
A variety of nanostructures are being investigated as functional drug carriers for treatment of a wide range of diseases, most notably cardiovascular defects, autoimmune diseases, and cancer. The aim of this present contribution is to evaluate potentially applicable nanomaterials in the diagnosis and treatment of cancer due to their photophysical and photobiological properties and complexation behavior. The delivery systems consisted of chloro-aluminum phthalocyanine associated with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. The preparation of the complex and its stoichiometry in an ethanol/buffer (3:1) solution were studied by spectroscopic techniques, which were defined as 1:2. The inclusion complex in the nanometer scale was observed on the basis of changes to the spectroscopic properties. The singlet oxygen production and complex photophysical parameters were determined by measuring luminescence at 1270 nm and by steady state and time resolved spectroscopic, respectively. The preparation of the complex was tested and analyzed with regard to cellular damage by visible light activation. The inclusion complex showed a higher singlet oxygen quantum yield compared with other systems and other photoactive dyes. There was also a reduction in the fluorescence quantum yield compared with the results obtained for zinc phthalocyanine in organic medium. The results reported clearly that the inclusion complex chloro-aluminum phthalocyanine/cyclodextrin showed some changes in its spectroscopy properties leading to better biodistribution and biocompatibility with a potential application in photodynamic therapy, especially in the case of neoplasy. Additionally, it also has non-oncological applications as a drug delivery system.