972 resultados para phosphorus bioavailability
Resumo:
Quercetin has antioxidants properties which may increase nitric oxide (NO) bioavailability. However, the effects of quercetin on NO status have been poorly studied. We evaluated whether quercetin improves the plasma levels of NO metabolites in two-kidney one-clip (2K1C) hypertensive rats and assessed its effect on endothelial function. Sham-operated and 2K1C rats were treated with quercetin (10 mg(-1) kg(-1) day(-1) by gavage) or vehicle for 3 weeks. Systolic blood pressure (SBP) was monitored weekly. Vascular responses to acetylcholine (Ach) and sodium nitroprusside (SNP) were assessed in hindquarter vascular bed. Plasma nitrate levels were assessed by Griess reagent and plasma nitrite and nitroso species (S, N-nitroso species) were assessed by ozone- based chemiluminescence. Aortic NADPH oxidase activity and superoxide production were evaluated. While quercetin had no effects in control normotensive rats (P > 0.05), it significantly reduced SBP in 2K1C rats (P < 0.05). At the end of treatment, plasma nitrate levels were similar in all experimental groups (P > 0.05). However, plasma nitrite and the nitroso species levels were significantly lower in 2K1C rats when compared with controls (P < 0.05). Quercetin treatment restored plasma nitrite and nitroso species levels to those found in the sham-vehicle group (P < 0.05). While quercetin treatment induced no significant changes in responses to SNP (P > 0.05), it restored the vascular responses to Ach. Quercetin significantly attenuated 2K1C-hypertension-induced increases in NADPH oxidase activity and vascular superoxide production (P < 0.05). These results suggest that the antihypertensive effects of quercetin were associated with increased NO formation and improved endothelial function, which probably result from its antioxidant effects.
Resumo:
Fibrinolytic activity is associated with presence of cystic medial degeneration in aneurysms of the ascending aorta Aims: Thoracic ascending aortic aneurysms (TAA) are characterized by elastic fibre breakdown and cystic medial degeneration within the aortic media, associated with progressive smooth muscle cell (SMC) rarefaction. The transforming growth factor (TGF)-beta/Smad2 signalling pathway is involved in this process. Because the pericellular fibrinolytic system activation is able to degrade adhesive proteins, activate matrix metalloproteinase (MMP), induce SMC disappearance and increase the bioavailability of TGF-beta, the aim was to investigate the plasminergic system in TAA. Methods and results: Ascending aortas [21 controls and 19 TAAs (of three different aetiologies)] were analysed. Immunohistochemistry showed accumulation of t-PA, u-PA and plasmin in TAAs, associated with residual SMCs. Overexpression of t-PA and u-PA was confirmed by reverse transcription-polymerase chain reaction (RT-PCR), immunoblotting and zymography on TAA extracts and culture medium conditioned by TAA. Plasminogen was present on the SMC surface and inside cytoplasmic vesicles, but plasminogen mRNA was undetectable in the TAA medial layer. Plasmin-antiplasmin complexes were detected in TAA-conditioned medium and activation of the fibrinolytic system was associated with increased fibronectin turnover. Fibronectin-related material was detected immunohistochamically in dense clumps around SMCs and colocalized with latent TGF-beta binding protein-1. Conclusions: The fibrinolytic pathway could play a critical role in TAA progression, via direct or indirect impact on ECM and consecutive modulation of TGF-beta bioavailability.
Resumo:
Objective: The purpose of the study was to investigate whether dentine irradiation with a pulsed CO(2) laser (10.6 mu m) emitting pulses of 10 ms is capable of reducing dentine calcium and phosphorus losses in an artificial caries model. Design: The 90 dentine slabs obtained from bovine teeth were randomly divided into six groups (n = 15): negative control group (GC); positive control group, treated with fluoride 1.23% (GF); and laser groups irradiated with 8 J/cm(2) (L8); irradiated as in L8 + fluoride 1.23% (L8F); irradiated with 11j/cm(2) (L11); irradiated as in L11 + fluoride 1.23% (L11F). After laser irradiation the samples were submitted to a pH-cycling model for 9 days. The calcium and phosphorous contents in the de- and remineralization solutions were measured by means of inductively coupled plasma optical emission spectrometer - ICP-OES. Additionally intra-pulpal temperature measurements were performed. The obtained data were analysed by means of ANOVA and Tukey`s test (alpha = 0.05). Results: In the demineralization solutions the groups L11F and GF presented significantly lower means of calcium and phosphorous losses than the control group; and in L11F means were significantly lower than in the fluoride group. Both irradiation parameters tested caused intrapulpal temperature increase below 2 degrees C. Conclusion: It can be concluded that under the conditions of this study, CO(2) laser irradiation (10.6 mu m) with 11J/cm(2) (540 mJ and 10 Hz) of fluoride treated dentine surfaces decreases the loss of calcium and phosphorous in the demineralization process and does not cause excessive temperature increase inside the pulp chamber. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.
Resumo:
Minimally invasive caries-removal procedures remove only caries-infected dentin and preserve caries-affected dentin that becomes remineralized. Dental cements containing calcium phosphate promote remineralization. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-P) used for indirect pulp-capping. Carious and sound teeth indicated for extraction were randomly restored with the Ca-P base or without base (control), followed by adhesive restoration. Study teeth were extracted after three months, followed by elemental analysis of the cavity floor. Mineral content of affected or sound dentin at the cavity floor was quantified by electron probe micro-analysis to 100-mu m depth. After three months, caries-affected dentin underneath the Ca-P base showed significantly increased calcium and phosphorus content to a depth of 30 mu m. Mineral content of treated caries-affected dentin was in the range of healthy dentin, revealing the capacity of Ca-P base to promote remineralization of caries-affected dentin.
Resumo:
Objective: To evaluate whether the type of cola drink (regular or diet) could influence the wear of enamel subjected to erosion followed by brushing abrasion, Method and !Materials: Ten volunteers wore intraoral devices that each had eight bovine enamel blocks divided into four groups; ER, erosion with regular cola; EAR, erosion with regular cola plus abrasion; EL, erosion with light cola; and EAL, erosion with light cola plus abrasion, Each day for 1 week, half of each device was immersed in regular cola for 5 minutes, Then, two blocks were brushed using a fluoridated toothpaste and electric toothbrush for 30 seconds four times daily, Immediately after, the other half of the device was subjected to the same procedure using a light cola, The pH, calcium, phosphorus, and fluoride concentrations of the colas were analyzed using standard procedures, Enamel alterations were measured by profilometry. Data were tested using two-way ANOVA and Bonferroni test (P < .05), Results: Regarding chemical characteristics, light cola presented pH 3.0, 13.7 mg Ca/L, 15.5 mg P/L, and 0.31 mg F/L, while regular cola had pH 2.6, 32.1 mg Ca/L, 1:8.1 mg P/L, and 0.26 mg F/L, The light cola promoted less enamel loss (EL, 0.36 pm; EAL, 0.39 pm) than its regular counterpart (ER, 0.72 pm; EAR, 0.95 pm) for both conditions, There was not a significant difference (P > .05) between erosion and erosion plus abrasion for light cola, However, for regular cola, erosion plus abrasion resulted in higher enamel loss than erosion alone,.nclusion: The data suggest that light cola promoted less enamel wear even when erosion was followed by brushing abrasion, (Quintessence Int 2011;42:xxx-xx)()
Resumo:
Background: Nitric oxide (NO) is a major regulator of cardiovascular homeostasis and has anti-atherogenic properties. Reduced NO formation is associated with endothelial dysfunction and with cardiovascular risk factors. Although NO downregulates the expression and activity of the pro-atherogenic enzyme matrix metalloproteinase-9 (MMP-9), no previous clinical study has examined whether endogenous NO formation is inversely associated with the circulating levels of pro-MMP-9, which are associated with cardiovascular events. We examined this hypothesis in 175 healthy male subjects who were non-smokers. Methods: To assess NO bioavailability, the plasma concentrations of nitrite, nitrate, and cGMP were determined using an ozone-based chemiluminescence assay and an enzyme immunoassay. Pro-MMP-9 and pro-MMP-2 levels were measured in plasma samples by gelatin zymography. Results: We found significant negative correlations between pro-MMP-9 levels and plasma nitrite (P=0.035, rs=-0.159), nitrate (P=0.040, rs=-0.158), and cGMP (P=0.011, rs=-0.189) concentrations. However, no significant correlations were found between pro-MMP-2 levels and the plasma concentrations of markers of NO bioavailability (all P>0.05). Conclusions: There is an inverse relationship between markers of NO formation and plasma MMP-9 levels. This finding may shed some light on the possible mechanisms involved in the increased cardiovascular risk of apparently healthy subjects with low NO bioavailability or high circulating levels of pro-MMP-9. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effect of FBP on folate bio-availability depends on its environment. The FBP of whole WPC enhances bioavailability of folates more than does purified FBP and its efficacy might be even greater when lipids are removed from the WPC. FBP polymerises and folate release from the polymer is found to be slower than that from the monomer. FBP has a role also as a folate receptor at cell surfaces and in this role folate binding increases polymerisation of FBP attached to lipid membranes.
Resumo:
Computer assisted learning has an important role in the teaching of pharmacokinetics to health sciences students because it transfers the emphasis from the purely mathematical domain to an 'experiential' domain in which graphical and symbolic representations of actions and their consequences form the major focus for learning. Basic pharmacokinetic concepts can be taught by experimenting with the interplay between dose and dosage interval with drug absorption (e.g. absorption rate, bioavailability), drug distribution (e.g. volume of distribution, protein binding) and drug elimination (e.g. clearance) on drug concentrations using library ('canned') pharmacokinetic models. Such 'what if' approaches are found in calculator-simulators such as PharmaCalc, Practical Pharmacokinetics and PK Solutions. Others such as SAAM II, ModelMaker, and Stella represent the 'systems dynamics' genre, which requires the user to conceptualise a problem and formulate the model on-screen using symbols, icons, and directional arrows. The choice of software should be determined by the aims of the subject/course, the experience and background of the students in pharmacokinetics, and institutional factors including price and networking capabilities of the package(s). Enhanced learning may result if the computer teaching of pharmacokinetics is supported by tutorials, especially where the techniques are applied to solving problems in which the link with healthcare practices is clearly established.
Resumo:
Background: The Australian Iron Status Advisory Panel advocates dietary intervention as the first treatment option for mild iron deficiency [serum ferritin (SF) = 10-15 mug/L]. However, there appear to be no studies on the efficacy of dietary treatment for iron deficiency. Objective: We compared the effects of iron supplementation and of a high-iron diet on serum ferritin (SF) and hemoglobin in iron-deficient women of childbearing age. Design: Forty-four iron-deficient women (SF < 15 mug/L or SF = 15-20 mug/L plus serum iron < 10 mu mol/L and total-iron-binding capacity > 68 mu mol/L) and 22 iron-replete women (hemoglobin greater than or equal to 120 g/L and SF > 20 mug/L) matched for age and parity categories were enrolled and completed 7-d weighed food records at baseline. The iron-deficient women were randomly allocated to receive iron supplementation (105 mg/d; supplement group) or a high-iron diet (recommended intake of absorbable iron: 2.25 mg/d; diet group) for 12 wk. Hematologic and dietary assessments were repeated at the end of the intervention and again after a 6-mo follow-up. Results: Mean SF in the supplement group increased from 9.0 +/- 3.9 mug/L at baseline to 24.8 +/- 10.0 mug/L after the intervention and remained stable during follow-up (24.2 +/- 9.8 mug/L whereas the diet group had smaller increases during the intervention (8.9 +/- 3.1 to 11.0 +/- 5.9 mug/L) but continued to improve during follow-up (to 15.2 +/- 9.5 mug/L). Mean hemoglobin tended to improve in both intervention groups, but the change was only significant in the supplement group. Conclusions: In iron-deficient women of childbearing age, a high-iron diet produced smaller increases in SF than did iron supplementation but resulted in continued improvements in iron status during a 6-mo follow-up.
Resumo:
Pecans from the cultivars Wichita and Western Schley [Carya illinoinensis (Wangenh.) K. Koch] collected over three years were analyzed for the following constituents: total lipid content; fatty acid profiles; sucrose content; protein; total dietary fiber; the minerals magnesium, calcium, potassium, sulfur, phosphorus, boron, copper, iron, manganese, sodium, zinc, and aluminum; vitamin C; and lipase; and lipoxygenase activities. Year of harvest and cultivar had little effect on the composition of the pecans. Overall, protein content was the only constituent that differed between pecans grown in Australia and those grown in the United States. This difference is probably related to differences in growing location and horticultural practices between the two countries.
Resumo:
Effluent water from shrimp ponds typically contains elevated concentrations of dissolved nutrients and suspended particulates compared to influent water. Attempts to improve effluent water quality using filter feeding bivalves and macroalgae to reduce nutrients have previously been hampered by the high concentration of clay particles typically found in untreated pond effluent. These particles inhibit feeding in bivalves and reduce photosynthesis in macroalgae by increasing effluent turbidity. In a small-scale laboratory study, the effectiveness of a three-stage effluent treatment system was investigated. In the first stage, reduction in particle concentration occurred through natural sedimentation. In the second stage, filtration by the Sydney rock oyster, Saccostrea commercialis (Iredale and Roughley), further reduced the concentration of suspended particulates, including inorganic particles, phytoplankton, bacteria, and their associated nutrients. In the final stage, the macroalga, Gracilaria edulis (Gmelin) Silva, absorbed dissolved nutrients. Pond effluent was collected from a commercial shrimp farm, taken to an indoor culture facility and was left to settle for 24 h. Subsamples of water were then transferred into laboratory tanks stocked with oysters and maintained for 24 h, and then transferred to tanks containing macroalgae for another 24 h. Total suspended solid (TSS), chlorophyll a, total nitrogen (N), total phosphorus (P), NH4+, NO3-, and PO43-, and bacterial numbers were compared before and after each treatment at: 0 h (initial); 24 h (after sedimentation); 48 h (after oyster filtration); 72 h (after macroalgal absorption). The combined effect of the sequential treatments resulted in significant reductions in the concentrations of all parameters measured. High rates of nutrient regeneration were observed in the control tanks, which did not contain oysters or macroalgae. Conversely, significant reductions in nutrients and suspended particulates after sedimentation and biological treatment were observed. Overall, improvements in water quality (final percentage of the initial concentration) were as follows: TSS (12%); total N (28%); total P (14%); NH4+ (76%); NO3- (30%); PO43-(35%); bacteria (30%); and chlorophyll a (0.7%). Despite the probability of considerable differences in sedimentation, filtration and nutrient uptake rates when scaled to farm size, these results demonstrate that integrated treatment has the potential to significantly improve water quality of shrimp farm effluent. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
Plant morphogenesis in vitro can be achieved via two pathways, somatic embryogenesis or organogenesis. Relationships between the culture medium and explant leading to morphogenesis are complex and, despite extensive study, remain poorly understood. Primarily the composition and ratio of plant growth regulators are manipulated to optimize the, quality and numbers of embryos or organs initiated. However, many species and varieties do not respond to this classical approach and require further optimization by the variation of other chemical or physical factors. Mineral nutrients form a significant component of culture media but are often overlooked as possible morphogenic elicitors. The combination of minerals for a particular plant species and developmental pathway are usually determined by the empirical manipulation of one or a combination of existing published formulations. Often only one medium type is used for the duration of culture even though this formulation may not be optimal for the different stages of explant growth and development. Furthermore, mineral studies have often focused on growth rather than morphogenesis with very little known of the relationships between mineral uptake and morphogenesis. This article examines the present knowledge of the main effects that mineral nutrients have on plant morphogenesis in vitro. In particular, the dynamics of nitrogen, phosphorus, and calcium supply during development are discussed.
Resumo:
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost-effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm, A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow-through system compared with a recirculating system. In the flow-through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28-35.2 mum) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae-filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.