965 resultados para nitrogen and potassium fertilizers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wetland restoration is a commonly used approach to reduce nutrient loading to freshwater and coastal ecosystems, with many wetland restoration efforts occurring in former agricultural fields. Restored wetlands are expected to be effective at retaining or removing both nitrogen and phosphorus (P), yet restoring wetland hydrology to former agricultural fields can lead to the release of legacy fertilizer P. Here, we examined P cycling and export following rewetting of the Timberlake Restoration Project, a 440 ha restored riverine wetland complex in the coastal plain of North Carolina. We also compared P cycling within the restored wetland to two minimally disturbed nearby wetlands and an adjacent active agricultural field. In the restored wetland we observed increased soluble reactive phosphorus (SRP) concentrations following initial flooding, consistent with our expectations that P bound to iron would be released under reducing conditions. SRP concentrations in spring were 2.5 times higher leaving the restored wetland than a forested wetland and an agricultural field. During two large-scale drawdown and rewetting experiments we decreased the water depth by 1 m in ∼10 ha of inundated wetland for 2 weeks, followed by reflooding. Rewetting following experimental drainage had no effect on SRP concentrations in winter, but SRP concentrations did increase when the experiment was repeated during summer. Our best estimates suggest that this restored wetland could release legacy fertilizer P for up to a decade following hydrologic restoration. The time lag between restoration and biogeochemical recovery should be incorporated into management strategies of restored wetlands. Copyright 2010 by the American Geophysical Union.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. However, very little is known about the abundance and origin of this aerosol fraction. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facility near Chapel Hill, NC, during January and June of 2007. A novel on-line instrument was used, which is based on the Steam Jet Aerosol Collector (SJAC) coupled to an on-line total carbon/total nitrogen analyzer and two on-line ion chromatographs. The concentration of ON was determined by tracking the difference in concentrations of total nitrogen and of inorganic nitrogen (determined as the sum of N-ammonium and N-nitrate). The time resolution of the instrument was 30 min with a detection limit for major aerosol components of ∼0.1 mu;gm-3. Nitrogen in organic compounds contributed ∼33% on average to the total nitrogen concentration in PM2.5, illustrating the importance of this aerosol component. Absolute concentrations of ON, however, were relatively low (lt;1.0 mu;gm-3) with an average of 0.16 mu;gm-3. The absolute and relative contribution of ON to the total aerosol nitrogen budget was practically the same in January and June. In January, the concentration of ON tended to be higher during the night and early morning, while in June it tended to be higher during the late afternoon and evening. Back-trajectories and correlation with wind direction indicate that higher concentrations of ON occur in air masses originating over the continental US, while marine air masses are characterized by lower ON concentrations. The data presented in this study suggests that ON has a variety of sources, which are very difficult to quantify without information on chemical composition of this important aerosol fraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stocks of the eastern oyster, Crassostrea virginica, have been declining in Chesapeake Bay since the late 19th century, and current strategies involve restoring culture of Crassostrea virginica on-bottom and in devices suspended within the water column. Sub-tidal suspension culture of Crassostrea virginica in Chesapeake Bay occurs mostly in sheltered inlets and tidal creeks and, thereby, has the potential to influence shallow water biogeochemical processes. To assess the influence of Crassostrea virginica biodeposits and benthic microalgae on sediment nitrogen and phosphorus exchange, field studies with Crassostrea virginica held in aquaculture floats and laboratory experiments were conducted. Enhanced organic nitrogen deposition from Crassostrea virginica biodeposits led to gradual increases in surface sediment nitrogen and pore water ammonium concentrations; however, modifications to pore water concentrations were not always expressed at the sediment-water interface. Benthic microalgae often modulated the influence of biodeposits on sediment nitrogen exchange but, as observed in laboratory experiments, the supply of nitrogen from Crassostrea virginica biodeposits may exceed their biological demand. Organic carbon from biodeposits had varying influences on aerobic respiration but consistently stimulated anaerobic metabolism. Shifts in net phosphorus exchange were driven by this anaerobic remineralization and concentrations of iron and manganese oxy(hydr)oxides, with transitions in fluxes coinciding with changes in benthic photosynthesis and oxidation of surface sediments. Manganese and iron oxy(hydr)oxides from biodeposits supported incorporation of added phosphorus and prevented exchange at the sediment-water interface in the absence of iron-sulfide mineral formation. Differences in the response of shallow water sediments to Crassostrea virginica biodeposits were due to the quality and quantity of biodeposits supplied, as well as the spatial and temporal variability within these sediments. Initial conditions and corresponding reference sediments illustrated the potential for sediment biogeochemistry and nutrient exchange from tidal creek sediments to vary spatially and temporally on relatively small scales. Factors influencing variability within tidal creek sediments were related to shifts in riverine freshwater inputs, macroalgal blooms, nutrient concentrations in overlying waters, and bioirrigation from the clam, Macoma balthica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our understanding on how ash particles in volcanic plumes react with coexisting gases and aerosols is still rudimentary, despite the importance of these reactions in influencing the chemistry and dynamics of a plume. In this study, six samples of fine ash (<100 μm) from different volcanoes were measured for their specific surface area, as, porosity and water adsorption properties with the aim to provide insights into the capacity of silicate ash particles to react with gases, including water vapour. To do so, we performed high-resolution nitrogen and water vapour adsorption/desorption experiments at 77 K and 303 K, respectively. The nitrogen data indicated as values in the range 1.1-2.1 m2/g, except in one case where as of 10 m2/g was measured. This high value is attributed to incorporation of hydrothermal phases, such as clay minerals, in the ash surface composition. The data also revealed that the ash samples are essentially non-porous, or have a porosity dominated by macropores with widths >500 Å All the specimens had similar pore size distributions, with a small peak centered around 50 Å These findings suggest that fine ash particles have relatively undifferentiated surface textures, irrespective of the chemical composition and eruption type. Adsorption isotherms for water vapour revealed that the capacity of the ash samples for water adsorption is systematically larger than predicted from the nitrogen adsorption as values. Enhanced reactivity of the ash surface towards water may result from (i) hydration of bulk ash constituents; (ii) hydration of surface compounds; and/or (iii) hydroxylation of the surface of the ash. The later mechanism may lead to irreversible retention of water. Based on these experiments, we predict that volcanic ash is covered by a complete monolayer of water under ambient atmospheric conditions. In addition, capillary condensation within ash pores should allow for deposition of condensed water on to ash particles before water reaches saturation in the plume. The total mass of water vapour retained by 1 g of fine ash at 0.95 relative water vapour pressure is calculated to be ∼10-2 g. Some volcanic implications of this study are discussed. © Springer-Verlag 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anthropogenic climate change is exerting pressures on coastal ecosystems through increases in temperature, precipitation and ocean acidification. Phytoplankton community structure and photo-physiology are therefore adapting to these conditions. Changes in phytoplankton biomass and photosynthesis in relation to temperature and nutrient concentrations were assessed using a 14 year dataset from a coastal station in the Western English Channel (WEC). Dinoflagellate and coccolithophorid biomass exhibited a positive correlation with temperature, reaching the highest biomass at between 15 and 17°C. Diatoms showed a negative correlation with temperature, with highest biomass at 10°C. Chlorophyll a (chl a) normalised light-saturated photosynthetic rates (PBm) exhibited a hyperbolic response to increasing temperature, with an initial linear increase from 8 to 11°C, and reaching a plateau from 12°C. There was however no significant positive correlation between nutrients and phytoplankton biomass or PBm, which reflects the lag time between nutrient input and phytoplankton growth at this coastal site. The major phytoplankton groups that occurred at this site occupied distinct thermal niches, which in turn modified PBm. Increasing temperature, and higher water column stratification, was major factors in the initiation of dinoflagellates blooms at this site. Dinoflagellates blooms during summer also co-varied with silicate concentration, and acted as a tracer of dissolved inorganic nitrogen and phosphate from river run-off, which were subsequently reduced during these blooms. The data implies that increasing temperature and high river runoff during summer, will promote dinoflaglellates blooms in the WEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystem models are often assessed using quantitative metrics of absolute ecosystem state, but these model-data comparisons are disproportionately vulnerable to discrepancies in the location of important circulation features. An alternative method is to demonstrate the models capacity to represent ecosystem function; the emergence of a coherent natural relationship in a simulation indicates that the model may have an appropriate representation of the ecosystem functions that lead to the emergent relationship. Furthermore, as emergent properties are large-scale properties of the system, model validation with emergent properties is possible even when there is very little or no appropriate data for the region under study, or when the hydrodynamic component of the model differs significantly from that observed in nature at the same location and time. A selection of published meta-analyses are used to establish the validity of a complex marine ecosystem model and to demonstrate the power of validation with emergent properties. These relationships include the phytoplankton community structure, the ratio of carbon to chlorophyll in phytoplankton and particulate organic matter, the ratio of particulate organic carbon to particulate organic nitrogen and the stoichiometric balance of the ecosystem. These metrics can also inform aspects of the marine ecosystem model not available from traditional quantitative and qualitative methods. For instance, these emergent properties can be used to validate the design decisions of the model, such as the range of phytoplankton functional types and their behaviour, the stoichiometric flexibility with regards to each nutrient, and the choice of fixed or variable carbon to nitrogen ratios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential response of the marine ecosystem of the northwest European continental shelf to climate change under a medium emissions scenario (SRES A1B) is investigated using the coupled hydrodynamics-ecosystem model POLCOMS-ERSEM. Changes in the near future (2030–2040) and the far future (2082–2099) are compared to the recent past (1983–2000). The sensitivity of the ecosystem to potential changes in multiple anthropogenic drivers (river nutrient loads and benthic trawling) in the near future is compared to the impact of changes in climate. With the exception of the biomass of benthic organisms, the influence of the anthropogenic drivers only exceeds the impact of climate change in coastal regions. Increasing river nitrogen loads has a limited impact on the ecosystem whilst reducing river nitrogen and phosphate concentrations affects net primary production(netPP) and phytoplankton and zooplankton biomass. Direct anthropogenic forcing is seen to mitigate/amplify the effects of climate change. Increasing river nitrogen has the potential to amplify the effects of climate change at the coast by increasing netPP. Reducing river nitrogen and phosphate mitigates the effects of climate change for netPP and the biomass of small phytoplankton and large zooplankton species but amplifies changes in the biomass of large phytoplankton and small zooplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many metals have serious toxic effects when ingested by aquatic organisms, and the process of bioaccumulation intensifies this problem. A better understanding of bioaccumulation trends of anthropogenically introduced metals in freshwater food webs is necessary for the development of effective management strategies to protect aquatic organisms, as well as organisms (including humans) that consume top-predator fish in these food webs. Various fish species representing different trophic levels of a pelagic food chain were sampled from Lake Champlain (VT/NY). Atomic absorption spectrometry (AAS) was used to determine levels of chromium, copper, cobalt, cadmium, lead, zinc, nickel, rubidium, cesium and potassium in the fish samples. Metal concentrations for chromium, cobalt, nickel, cesium, cadmium (<5.0 ppm) and lead (<10.0 ppm) were found to be all below detection limits. Carbon and nitrogen isotopic ratios were analyzed to determine the trophic relationship of each fish species. Stable isotope and AAS metal data were used in tandem to produce linear regressions for each metal against trophic level to assess biomagnification. Both potassium and zinc showed no biomagnification because they are homeostatically regulated essential trace metals. Copper was under the detection limits for all fish species with the exception of the sea lamprey; but showed a significant biodiminution among the invertebrates and lamprey. Rubidium, a rarely studied metal, was shown to increase with trophic level in a marginally significant linear relationship suggesting biomagnification is possible where more trophic levels are sampled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High resolution spectra of seven early B-type giant/supergiant stars in the SMC cluster NGC330 are analysed to obtain their chemical compositions relative to SMC field and Galactic B-type stars. It is found that all seven stars are nitrogen rich with an abundance approximately 1.3 dex higher than an SMC main- sequence field B-type star, AV304. They also display evidence for deficiencies in carbon, but other metals have abundances typical of the SMC. Given the number of B-type stars with low projected rotational velocities in NGC330 (all our targets have v sin i <50 km s(-1)), we suggest that it is unlikely that the stars in our sample are seen almost pole-on, but rather that they are intrinsically slow rotators. Furthermore, none of our objects displays any evidence of significant Balmer emission excluding the possibility that these are Be stars observed pole-on. Comparing these results with the predictions of stellar evolution models including the effects of rotationally induced mixing, we conclude that while the abundance patterns may indeed be reproduced by these models, serious discrepancies exist. Most importantly, models including the effects of initially large rotational velocities do not reproduce the observed range of effective temperatures of our sample, nor the currently observed rotational velocities. Binary models may be able to produce stars in the observed temperature range but again may be incapable of producing suitable analogues with low rotational velocities. We also discuss the clear need for stellar evolution calculations employing the correct chemical mix of carbon, nitrogen and oxygen for the SMC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports the initial response of atomic nitrogen doped diamond like carbon (DLC) to endothelial cells in vitro. The introduction of nitrogen atoms/molecules to the diamond like carbon structures leads to an atomic structural change favorable to the attachment of human micro-vascular enclothelial cells. Whilst the semi-conductivity induced by nitrogen in DLC is thought to play a part, the increase in the inion-bonded N atoms and N-2 molecules in the atomic doped species (with the exclusion of the charged species) seems to contribute to the improved attachment of human microvascular endothelial cells. The increased endothelial attachment is associated with a lower work function and slightly higher water contact angle in the atomic doped films, where the heavy charged particles are excluded. The films used in the study were synthesized by the RF PECVD technique followed by post deposition doping with nitrogen, and afterwards the films were characterized by XPS, Raman spectroscopy, SIMS and Kelvin probe. The water contact angles were measured, and the counts of the adherent endothelial cells on the samples were carried out. This study is relevant and contributory to improving biocompatibility of surgical implants and prostheses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical oxidation of 1-butyl-3-methylimidazolium nitrate [C(4)mim][NO3] was studied by cyclic voltammetry in the room temperature ionic liquid (RTIL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C(2)mim][NTf2]. A sharp peak was observed on a Pt microelectrode (d = 10 mu m), and a diffusion coefficient at infinite dilution of ca. 2.0 x 10(-11) m(2) s(-1) was obtained. Next, the cyclic voltammetry of sodium nitrate (NaNO3) and potassium nitrate (KNO3) was studied, by dissolving small amounts of solid into the RTIL [ C2mim][ NTf2]. Similar oxidation peaks were observed, revealing diffusion coefficients of ca. 8.8 and 9.0 x 10(-12) m(2) s(-1) and solubilities of 11.9 and 10.8 mM for NaNO3 and KNO3, respectively. The smaller diffusion coefficients for NaNO3 and KNO3 (compared to [C(4)mim][NO3]) may indicate that NO3- is ion-paired with Na+ or K+. This work may have applications in the electroanalytical determination of nitrate in RTIL solutions. Furthermore, a reduction feature was observed for both NaNO3 and KNO3, with additional anodic peaks indicating the formation of oxides, peroxides, superoxides and nitrites. This behaviour is surprisingly similar to that obtained from melts of NaNO3 and KNO3 at high temperatures ( ca. 350 - 500 degrees C), and this observation could significantly simplify experimental conditions required to investigate these compounds. We then used X-ray photoelectron spectroscopy (XPS) to suggest that disodium( I) oxide (Na2O), which has found use as a storage compound for hydrogen, was deposited on a Pt electrode surface following the reduction of NaNO3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The density functional theory (DFT) based hard-soft acid-base (HSAB) reactivity indices, including the electrophilicity index, have been successfully applied to many areas of molecular chemistry. In this work we test the applicability of such an approach to fundamental surface chemistry. We have considered, as prototypical surface reactions, both the hydrogenation of atomic nitrogen and the dissociative adsorption of the NH molecular radical. By use of a DFT methodology, the minimum energy reaction pathways, and corresponding reaction barriers, of the above reactions over Zr(001), Nb(110), Mo(110), Tc(001), Ru(001), Rh(111), and Pd(111) have been determined. By consideration of the chemical potential and chemical hardness of the surface metal atoms, and the principle of electronegativity equalization, it is found that the charge transferred to the NH radical during the process of dissociative adsorption correlates very well with that determined by Mulliken population analysis. Furthermore, it is found that the stability of the NH/surface transition state complex relates directly to this charge transfer and that the trend in transition state stability predicted by a HSAB; treatment correlates very strongly with that determined by DFT calculations. With regards to N hydrogenation, we find that during the course of the reaction, H loses cohesion to the surface, as it must migrate from a 3-fold hollow site to either a bridge or top site, to react with N. Partial density of states (PDOS) and Mulliken population analysis reveal that this loss of bonding is accompanied by charge transfer from H to the surface metal atoms. Moreover, by simple modeling, we show that the reaction barriers are directly proportional to this mandatory charge transfer. Indeed, it is found that the reaction barriers correlate very well with the electrophilicity index of the metal atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new type of direct current, high-density, and low electron temperature reflex plasma source, obtained as a hybrid between a modified hollow-cathode discharge and a Penning ionization gauge discharge is presented. The plasma source was tested in argon, nitrogen, and oxygen over a range pressure of 1.0-10(-3) mbar, discharge currents 20-200 mA, and magnetic field 0-120 Gauss. Both external parameters, such as breakdown potential and the discharge voltage-current characteristic, and its internal parameters, like the electron energy distribution function, electron and ion densities, and electron temperature, were measured. Due to the enhanced hollow-cathode effect by the magnetic trapping of electrons, the density of the bulk plasma is as high as 10(18) m(-3), and the electron temperature is as low as a few tenths of electron volts. The plasma density scales with the dissipated power. Another important feature of this reflex plasma source is its high degree of uniformity, while the discharge bulk region is free of an electric field. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of collisional de-excitation (quenching) coefficients required for the interpretation of emission and fluorescence spectroscopic measurements are reported. Particular attention is turned on argon transitions which are of interest for actinometric determinations of atomic ground state populations and on fluorescence lines originating from excited atoms and noble gases in connection with two-photon excitation (TALIF) of atomic radicals. A novel method is described which allows to infer quenching coefficients for collisions with molecular hydrogen of noble gas states in the energy range up to 24 eV. The excitation is performed in these experiments by collisions of energetic electrons in the sheath of an RF excited hydrogen plasma during the field reversal phase which lasts about 10 ns. We describe in addition a calibration method - including quenching effects - for the determination by TALIF of absolute atomic radical densities of hydrogen, nitrogen and oxygen using two-photon resonances in noble gases close by the resonances of the species mentioned. The paper closes with first ideas on a novel technique to bypass quenching effects in TALIF by introducing an additional, controllable loss by photoionization that will allow quenching-free determination of absolute atomic densities with prevalent nanosecond laser systems in situations where collisional de-excitation dominates over spontaneous emission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new chemical model is presented for the carbon-rich circumstellar envelope (CSE) of the asymptotic giant branch star IRC+10216. The model includes shells of matter with densities that are enhanced relative to the surrounding circumstellar medium. The chemical model uses an updated reaction network including reactions from the RATE06 database and a more detailed anion chemistry. In particular, new mechanisms are considered for the formation of CN-, C3N-, and C2H-, and for the reactions of hydrocarbon anions with atomic nitrogen and with the most abundant cations in the CSE. New reactions involving H- are included which result in the production of significant amounts of C2H- and CN- in the inner envelope. The calculated radial molecular abundance profiles for the hydrocarbons C2H, C4H, and C6H and the cyanopolyynes HC3N and HC5N show narrow peaks which are in better agreement with observations than previous models. Thus, the narrow rings observed in molecular microwave emission surrounding IRC+10216 are interpreted as arising in regions of the envelope where the gas and dust densities are greater than the surrounding circumstellar medium. Our models show that CN- and C2H- may be detectable in IRC+10216 despite the very low theorized radiative electron attachment rates of their parent neutral species. We also show that magnesium isocyanide (MgNC) can be formed in the outer envelope through radiative association involving Mg+ and the cyanopolyyne species.