Bioaccumulation Trends of Ten Metals in a Pelagic Food Web of Lake Champlain


Autoria(s): Mislan, Patrick
Data(s)

11/05/2007

11/05/2007

11/05/2007

Resumo

Many metals have serious toxic effects when ingested by aquatic organisms, and the process of bioaccumulation intensifies this problem. A better understanding of bioaccumulation trends of anthropogenically introduced metals in freshwater food webs is necessary for the development of effective management strategies to protect aquatic organisms, as well as organisms (including humans) that consume top-predator fish in these food webs. Various fish species representing different trophic levels of a pelagic food chain were sampled from Lake Champlain (VT/NY). Atomic absorption spectrometry (AAS) was used to determine levels of chromium, copper, cobalt, cadmium, lead, zinc, nickel, rubidium, cesium and potassium in the fish samples. Metal concentrations for chromium, cobalt, nickel, cesium, cadmium (<5.0 ppm) and lead (<10.0 ppm) were found to be all below detection limits. Carbon and nitrogen isotopic ratios were analyzed to determine the trophic relationship of each fish species. Stable isotope and AAS metal data were used in tandem to produce linear regressions for each metal against trophic level to assess biomagnification. Both potassium and zinc showed no biomagnification because they are homeostatically regulated essential trace metals. Copper was under the detection limits for all fish species with the exception of the sea lamprey; but showed a significant biodiminution among the invertebrates and lamprey. Rubidium, a rarely studied metal, was shown to increase with trophic level in a marginally significant linear relationship suggesting biomagnification is possible where more trophic levels are sampled.

SWEP and NSERC

Formato

754900 bytes

application/pdf

Identificador

http://hdl.handle.net/1974/420

Palavras-Chave #Bioaccumulation #Metals #Rubidium #Potassium #Zinc #Copper #Trophodynamics #Trophic Transfer
Tipo

Thesis