985 resultados para muscarinic receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

P2Y(1) is an ADP-activated G protein-coupled receptor (GPCR). Its antagonists impede platelet aggregation in vivo and are potential antithrombotic agents. Combining ligand and structure-based modeling we generated a consensus model (LIST-CM) correlating antagonist structures with their potencies. We docked 45 antagonists into our rhodopsin-based human P2Y(1) homology model and calculated docking scores and free binding energies with the Linear Interaction Energy (LIE) method in continuum-solvent. The resulting alignment was also used to build QSAR based on CoMFA, CoMSIA, and molecular descriptors. To benefit from the strength of each technique and compensate for their limitations, we generated our LIST-CM with a PLS regression based on the predictions of each methodology. A test set featuring untested substituents was synthesized and assayed in inhibition of 2-MeSADP-stimulated PLC activity and in radioligand binding. LIST-CM outperformed internal and external predictivity of any individual model to predict accurately the potency of 75% of the test set.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cholecystokinin-1 receptor (CCK1R) mediates actions of CCK in areas of the central nervous system and of the gut. It is a potential target to treat a number of diseases. As for all G-protein-coupled receptors, docking of ligands into modeled CCK1R binding site should greatly help to understand intrinsic mechanisms of activation. Here, we describe the procedure we used to progressively build a structural model for the CCK1R, to integrated, and on the basis of site-directed mutagenesis data on its binding site. Reliability of the CCK1R model was confirmed by interaction networks that involved conserved and functionally crucial motifs in G-protein-coupled receptors, such as Glu/Asp-Arg-Tyr and Asn-Pro-Xaa-Xaa-Tyr motifs. In addition, the 3-D structure of CCK1R-bound CCK resembled that determined by NMR in a lipid environment. The derived computational model was also used for revealing binding modes of several nonpeptide ligands and for rationalizing ligand structure-activity relationships known from experiments. Our findings indeed support that our "validated CCK1R model" could be used to study the intrinsic mechanism of CCK1R activation and design new ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the molecular-graphic complex Sybyl6.7.2, computational construction of spatial models for N-terminal domains (of NR1- and NR2B-subunits) of NMDA-receptor was conducted. On the basis of the constructed models and also CoMFA method the conclusion is made about presence of the binding site for the compounds similar to iphenprodyl in two N-terminal domains of NR1- and NR2B-subunits. The obtained data can be used for constructing new ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The computer molecular docking of piperonyl acid piperidide (BDP) and some its analogs already known as ampakins was conducted for estimating their possible binding with AMPA-receptor glutamate domains in cyclothiazide binding area and for further design of new structures maximally complimentary to the receptor. On the base of the conducted docking it can be suggested that the binding site of BDP (amides of benzodioxane-6-carboxylic and piperonyl acids) analogs is located in AMPA-receptor cyclothiazide binding pocket. It is shown that formation of protein-ligand complexes of AMPA-receptor with benzodioxane-6-carboxylic and piperonyl acid derivatives, similarly to cyclothiazide, proceeds with interaction with Ser497, Leu751, which significance is confirmed by site-specific mutagenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Homology modeling was used to build 3D models of the N-methyl-D-aspartate (NMDA) receptor glycine binding site on the basis of an X-ray structure of the water-soluble AMPA-sensitive receptor. The docking of agonists and antagonists to these models was used to reveal binding modes of ligands and to explain known structure-activity relationships. Two types of quantitative models, 3D-QSAR/CoMFA and a regression model based on docking energies, were built for antagonists (derivatives of 4-hydroxy-2-quinolone, quinoxaline-2,3-dione, and related compounds). The CoMFA steric and electrostatic maps were superimposed on the homology-based model, and a close correspondence was marked. The derived computational models have permitted the evaluation of the structural features crucial for high glycine binding site affinity and are important for the design of new ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present new homology-based models of the glutamate binding site (in closed and open forms) of the NMDA receptor NR2B subunit derived from X-ray structures of the water soluble AMPA sensitive glutamate receptor. The models were used for revealing binding modes of agonists and competitive antagonists, as well as for rationalizing known experimental facts concerning structure-activity relationships: (i) the switching between the agonist and the antagonist modes of action upon lengthening the chain between the distal acidic group and the amino acid moiety, (ii) the preference for the methyl group attached to the a-amino group of ligands, (iii) the preference for the D-configuration of agonists and antagonists, and (iv) the existence of "superacidic" agonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

alpha(1)-adrenergic receptor (AR) activation is thought to be initiated by disruption of a constraining interhelical salt bridge (Porter et al., 1996). Disruption of this salt bridge is achieved through a competition for the aspartic acid residue in transmembrane domain three by the protonated amine of the endogenous ligand norepinephrine and a lysine residue in transmembrane domain seven. To further test this hypothesis, we investigated the possibility that a simple amine could mimic an important functional group of the endogenous ligand and break this alpha(1)-AR ionic constraint leading to agonism. Triethylamine (TEA) was able to generate concentration-dependent increases of soluble inositol phosphates in COS-1 cells transiently transfected with the hamster alpha(1b)-AR and in Rat-1 fibroblasts stably transfected with the human alpha(1a)-AR subtype. TEA was also able to synergistically potentiate the second messenger production by weak partial alpha(1)-AR agonists and this effect was fully inhibited by the alpha(1)-AR antagonist prazosin. However, this synergistic potentiation was not observed for full alpha(1)-AR agonists. Instead, TEA caused a parallel rightward shift of the dose-response curve, consistent with the properties of competitive antagonism. TEA specifically bound to a single population of alpha(1)-ARs with a K-i of 28.7 +/- 4.7 mM. In addition, the site of binding by TEA to the alpha(1)-AR is at the conserved aspartic acid residue in transmembrane domain three, which is part of the constraining salt bridge. These results indicate a direct interaction of TEA in the receptor agonist binding pocket that leads to a disruption of the constraining salt bridge, thereby initiating alpha(1)-AR activation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: A major factor limiting the effective clinical management of colorectal cancer (CRC) is resistance to chemotherapy. Therefore, the identification of novel, therapeutically targetable mediators of resistance is vital.Experimental design: We used a CRC disease-focused microarray platform to transcriptionally profile chemotherapy-responsive and nonresponsive pretreatment metastatic CRC liver biopsies and in vitro samples, both sensitive and resistant to clinically relevant chemotherapeutic drugs (5-FU and oxaliplatin). Pathway and gene set enrichment analyses identified candidate genes within key pathways mediating drug resistance. Functional RNAi screening identified regulators of drug resistance.

Results: Mitogen-activated protein kinase signaling, focal adhesion, cell cycle, insulin signaling, and apoptosis were identified as key pathways involved in mediating drug resistance. The G-protein-coupled receptor galanin receptor 1 (GalR1) was identified as a novel regulator of drug resistance. Notably, silencing either GalR1 or its ligand galanin induced apoptosis in drug-sensitive and resistant cell lines and synergistically enhanced the effects of chemotherapy. Mechanistically, GalR1/galanin silencing resulted in downregulation of the endogenous caspase-8 inhibitor FLIP(L), resulting in induction of caspase-8-dependent apoptosis. Galanin mRNA was found to be overexpressed in colorectal tumors, and importantly, high galanin expression correlated with poor disease-free survival of patients with early-stage CRC.

Conclusion: This study shows the power of systems biology approaches to identify key pathways and genes that are functionally involved in mediating chemotherapy resistance. Moreover, we have identified a novel role for the GalR1/galanin receptor-ligand axis in chemoresistance, providing evidence to support its further evaluation as a potential therapeutic target and biomarker in CRC. Clin Cancer Res; 18(19); 5412–26. © 2012 AACR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients attending for diagnostic oesophagogastroduodenoscopy (OGD) for dyspeptic symptoms are often receiving acid-suppression therapy that has not been discontinued prior to endoscopy, and this may reduce the diagnostic yield of endoscopy. The aim of this study was to compare the diagnostic yield of OGD in uncomplicated dyspepsia in patients receiving no medication, those receiving acid-suppression therapy, and those receiving nonsteroidal anti-inflammatory drugs (NSAIDs) at the time of endoscopy.