986 resultados para mixed-signal
Resumo:
Two series of layered mixed oxides La4BaCu5-xMxO13+lambda(M = Mn, Co, x = 0 similar to 5) were prepared and characterized by means of XRD, XPS, O-2-TPD and chemical analysis. The results show that their structures are 5-layered ABO(3) perovskite, and the XPS and O-2-TPD investigation confirms that there exists synergistic effect between Cu ion and M when M ion is doped into the lattice of La4BaCu5O13+lambda,, and the synergistic effect between Mn and Cu is stronger than that of Cu-Co.
Resumo:
A novel mixed-valence molybdenum(IV, VI) arsenate(III), Ni(H2NCH2CH2NH2)(3)[((MoO6)-O-IV)(Mo6O18)-O-VI((As3O3)-O-III)(2)]H2O, hydrothermally synthesized and characterized by single-crystal X-ray diffraction and thermogravimetric analysis. The polyanion cage derives from the Anderson structure, in which the central octahedron was filled up by molybdenum(IV) and it was capped on both sides by a novel As3O63- cyclo-triarsenate(III). The title compound had a high catalytic activity for the oxidation of benzaldehyde to benzoic acid using H2O2 as oxidant in a liquid-solid biphase system. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The mixed oxide La2CuO4 was synthesized by four different methods and characterized with XRD, BET, TEM and low angle XRD. The effect of the synthetic method on the crystal structure, crystal size, surface area and catalytic activity to NO - CO reaction were studied. The results showed that the samples derived from different methods exhibited different activity to NO-CO reaction, the reason may be that the concentration and type of oxygen defect were different when the synthetic methods were different.
Resumo:
Catalysts with spinel structure derived from Hydrotalcite-like Compounds (HTLcs) containing cobalt have been investigated in NO catalytic reduction by Co. It was found that catalysts with spinel structures derived from HTLcs had obviously higher activity than that prepared from general methods. A two-step reaction was observed during the reaction curse: NO was first reduced to N2O by Co, and with the increase of temperature, the N2O was reduced to N-2. The reactivity of the catalysts studied increased with the amount of cobalt-content in the catalyst, and decreased with the calcination temperature. The crystal defect would play an important role in the reaction.
Resumo:
Mixed Langmuir-Blodgett films of tri-(2,4-di-t-amylphenoxy)-(8-quinolinolyl) copper phthalocyanine and water-soluble fullerenols are prepared. Their behavior at the air-water interface and the monolayer morphology are studied. (C) 1998 Elsevier Science Limited. All rights reserved.
Resumo:
A series of sample having the stoichiometry La4BaCu5-xMnxO12 (x = 0 similar to 5) were prepared, characterized by XRD, IR and H-2 - TPR and used as catalyst for NO + CO reaction. It was found that they have 5 - layered ABO(3) - type structure. The results of H-2 - TPR showed that the Cu ion was more easily reduced while a part of them was replaced by Mn ions. Their catalytic behavior to NO + CO reaction was investigate, La4BaCu2Mn3O12 showed the highest catalyst activity for the reaction than the others. The reaction mechanism is discussed:the activity of the catalysts could be attributed to the Cu ions, but it was improved when Mn ions took the place of some Cu ions.
Resumo:
The mixed oxides, including LaBa2Cu3O7, LaBaCu2O5, La4BaCu5O12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, H-2-TPR. It was found that their structures were layered ABO(3) perovskite structure and they were the active catalysts for the NO reduction by CO. The existence of Cu3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.
Resumo:
A series of LnSrNiO(4)(A(2)BO(4), Ln = La, Pr, Nd, Sm, Gd) mixed oxides with K2NiF4 structure, in which A-site(Sr) was partly substituted by individual light rare earth element, was prepared. The solid state physico-chemical properties including crystal structure, defect structure, IR spectrum, valence state of H-site ion, nonstoichiometric oxygen, oxygenous species, the properties of oxidation and reduction etc. as well as the catalytic behavior for NO decomposition on these mixed oxides were investigated. The results show that all of these mixed oxide catalysts have high activity for the direct decomposition of NO(at 900 degrees C the conversion of NO is more than 90%). The effect of the substitution of light rare earth elements at A-site on catalytic behavior for NO decomposition was elucidated.
Resumo:
The mixed oxides, including YBa2Cu3O7, LaBa2Cu3O7, LaBaCu2O5, La2BaCu3O7, La4BaCu5O12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, TPD and TPR method. It was found that they were the active catalysts for the NO decomposition and NO reduction by CO. The existance of Cu3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.
Resumo:
V(IV) and V(V) containing mixed-valence heteropolytungstogermanates have been prepared by controlled potential reduction of corresponding GeW9V3O407-, their electronic spectra have been recorded. The ESR spectra of one-electron-reduced anions in solution at 340K consist of more than 40 equally spaced lines, showing that the three VO6 octahedra in both alpha- and beta-forms are corner-shaped and one of the bridging oxygen atoms is protonated at pH 4.7.
Resumo:
A new series of mixed conducting oxides, Sr10-n/2BinFe20Om (n = 4, 6, 8, 10), were synthesized by a solid state reaction method, and they have high oxygen permeability. The oxygen permeation rate at 1150 K is 0.41 ml(STD)/ cm(2).min for n = 6 and 0.90 ml(STD)/cm(2).min for n = 10, which is two times higher than that for Sr1-xBixFeO3 (x = 0.5). For the Sr1-xBixFeO3 (x = 0.1, 0.3, 0.5) series, the oxygen flux increases with increasing Bi content. (C) 1998 Elsevier Science Ltd.
Resumo:
Two groups of mixed oxides La2-xThxCuO4+/-lambda (0.0 less than or equal to x less than or equal to 0.4) and La2-xSrxCuO4+/-lambda (0.0 less than or equal to x less than or equal to 1.0) were prepared. Their crystal structures were studied with XRD and IR spectra, etc. Meanwhile, the average valence of Cu ions and nonstoichiometric oxygen (lambda) was measured through chemical analyses. Catalysis of the abovementioned mixed oxides was investigated in phenol hydroxylation, good results were obtained for some mixed oxides, and found that the catalysis of these mixed oxides have close relation with their defect structure and composition. A radical substitution mechanism was also proposed for this catalytic reaction.
Resumo:
The electrochemistry of Prussian blue mixed in a polymer medium containing MClO4 (M = Li+, Na+, K+, TBA(+)) as the supporting electrolyte was studied by means of solid-state voltammetry. This approach is new in Prussian blue studies. The behavior of PB in polymer electrolytes is somewhat similar to the well-known behavior for an electrochemically synthesized PB film in aqueous media. Besides, K+, Li+ and Na+ ions can also transport through the crystal of PB because of its zeolitic nature. The transport of TBA(+) ions is possible. Kinetic control lies in the diffusion of cations in and out of the lattice of Prussian blue. Reduction waves of Prussian blue depend on both the size and type of cations. PB is very stable upon electrochemical cycling in polymer electrolytes and air. This system may be used in rechargeable batteries and electrochromic devices.
Resumo:
Mixed oxides Ln(2)CuO(4+/-lambda)(Ln = La, Pr, Nd, Sm, Gd) with K2NiF4 structure were prepared. Their crystal structures were studied with XRD and IR spectra. Meanwhile, the average valence of Cu ions and nonstoichiometric oxygen (lambda) were determined through chemical analyses. Catalysis of the above-mentioned mixed oxides in the phenol hydroxylation was investigated. Results show that the catalysis of these mixed oxides has close relation with their structures and composition. Substitution of A site atom in Ln(2)CuO(4+/-lambda) has a great influence on their catalysis in the phenol hydroxylation.
Resumo:
The collapse process of porphyrin monolayers at the air-water interface was studied by Brewster angle microscopy and by compression-recompression isotherms. It was found that the start of collapse observed by BAM is accordant with that measured by compression-recompression isotherms. The behavior of mixed monolayers was studied also and the results showed that porphyrin islands were excluded from mixed monolayers at 35mN/m.