14 resultados para mixed-signal

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the vulva of the nematode Caenorhabditis elegans is induced by a signal from the anchor cell of the somatic gonad. Activity of the gene lin-3 is required for the Vulval Precursor Cells (VPCs) to assume vulval fates. It is shown here that lin-3 encodes the vulval-inducing signal.

lin-3 was molecularly cloned by transposon-tagging and shown to encode a nematode member ofthe Epidermal Growth Factor (EGF) family. Genetic epistasis experiments indicate that lin-3 acts upstream of let-23, which encodes a homologue of the EGF-Receptor.

lin-3 transgenes that contain multiple copies of wild-type lin-3 genomic DNA clones confer a dominant multivulva phenotype in which up to all six of the VPCs assume vulval fates. The properties of these trans genes suggest that lin-3 can act in the anchor cell to induce vulval fates. Ablation of the gonadal precursors, which prevents the development of the AC, strongly reduces the ability of lin-3 transgenes to stimulate vulval development. A lin-3 recorder transgene that retains the ability to stimulate vulval development is expressed specifically in the anchor cell at the time of vulval induction.

Expression of an obligate secreted form of the EGF domain of Lin-S from a heterologous promoter is sufficient to induce vulval fates in the absence of the normal source of the inductive signal. This result suggests that Lin-S may act as a secreted factor, and that Lin-S may be the sole vulval-inducing signal made by the anchor cell.

lin-3 transgenes can cause adjacent VPCs to assume the 1° vulval fate and thus can override the action of the lateral signal mediated by lin-12 that normally prevents adjacent 1° fates. This indicates that the production of Lin-3 by the anchor cell must be limited to allow the VPCs to assume the proper pattern of fates of so 3° 3° 2° 1° 2° 3°.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roles of the folate receptor and an anion carrier in the uptake of 5- methyltetrahydrofolate (5-MeH_4folate) were studied in cultured human (KB) cells using radioactive 5-MeH_4folate. Binding of the 5-MeH_4folate was inhibited by folic acid, but not by probenecid, an anion carrier inhibitor. The internalization of 5-MeH_4folate was inhibited by low temperature, folic acid, probenecid and methotrexate. Prolonged incubation of cells in the presence of high concentrations of probenecid appeared to inhibit endocytosis of folatereceptors as well as the anion carrier. The V_(max) and K_M values for the carrier were 8.65 ± 0.55 pmol/min/mg cell protein and 3.74 ± 0.54µM, respectively. The transport of 5-MeH4folate was competitively inhibited by folic acid, probenecid and methotrexate. The carrier dissociation constants for folic acid, probenecid and methotreate were 641 µM, 2.23 mM and 13.8 µM, respectively. Kinetic analysis suggests that 5-MeH_4folate at physiological concentration is transported through an anion carrier with the characteristics of the reduced-folate carrier after 5-MeH_4folate is endocytosed by folate receptors in KB cells. Our data with KB cells suggest that folate receptors and probenecid-sensitive carriers work in tandem to transport 5-MeH_4folate to the cytoplasm of cells, based upon the assumption that 1 mM probenecid does not interfere with the acidification of the vesicle where the folate receptors are endocytosed.

Oligodeoxynucleotides designed to hybridize to specific mRNA sequences (antisense oligonucleotides) or double stranded DNA sequences have been used to inhibit the synthesis of a number of cellular and viral proteins (Crooke, S. T. (1993) FASEB J. 7, 533-539; Carter, G. and Lemoine, N. R. (1993) Br. J. Cacer 67, 869-876; Stein, C. A. and cohen, J. S. (1988) Cancer Res. 48, 2659-2668). However, the distribution of the delivered oligonucleotides in the cell, i.e., in the cytoplasm or in the nucleus has not been clearly defined. We studied the kinetics of oligonucleotide transport into the cell nucleus using reconstituted cell nuclei as a model system. We present evidences here that oligonucleotides can freely diffuse into reconstituted nuclei. Our results are consistent with the reports by Leonetti et al. (Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2702-2706, April 1991), which were published while we were carrying this research independently. We also investigated whether a synthetic nuclear localization signal (NLS) peptide of SV40 T antigen could be used for the nuclear targeting of oligonucleotides. We synthesized a nuclear localization signal peptide-conjugated oligonucleotide to see if a nuclear localization signal peptide can enhance the uptake of oligonucleotides into reconstituted nuclei of Xenopus. Uptake of the NLS peptide-conjugated oligonucleotide was comparable to the control oligonucleotide at similar concentrations, suggesting that the NLS signal peptide does not significantly enhance the nuclear accumulation of oligonucleotides. This result is probably due to the small size of the oligonucleotide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some of the most exciting developments in the field of nucleic acid engineering include the utilization of synthetic nucleic acid molecular devices as gene regulators, as disease marker detectors, and most recently, as therapeutic agents. The common thread between these technologies is their reliance on the detection of specific nucleic acid input markers to generate some desirable output, such as a change in the copy number of an mRNA (for gene regulation), a change in the emitted light intensity (for some diagnostics), and a change in cell state within an organism (for therapeutics). The research presented in this thesis likewise focuses on engineering molecular tools that detect specific nucleic acid inputs, and respond with useful outputs.

Four contributions to the field of nucleic acid engineering are presented: (1) the construction of a single nucleotide polymorphism (SNP) detector based on the mechanism of hybridization chain reaction (HCR); (2) the utilization of a single-stranded oligonucleotide molecular Scavenger as a means of enhancing HCR selectivity; (3) the implementation of Quenched HCR, a technique that facilitates transduction of a nucleic acid chemical input into an optical (light) output, and (4) the engineering of conditional probes that function as sequence transducers, receiving target signal as input and providing a sequence of choice as output. These programmable molecular systems are conceptually well-suited for performing wash-free, highly selective rapid genotyping and expression profiling in vitro, in situ, and potentially in living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RTKs-mediated signaling systems and the pathways with which they interact (e.g., those initiated by G protein-mediated signaling) involve a highly cooperative network that sense a large number of cellular inputs and then integrate, amplify, and process this information to orchestrate an appropriate set of cellular responses. The responses include virtually all aspects of cell function, from the most fundamental (proliferation, differentiation) to the most specialized (movement, metabolism, chemosensation). The basic tenets of RTK signaling system seem rather well established. Yet, new pathways and even new molecular players continue to be discovered. Although we believe that many of the essential modules of RTK signaling system are rather well understood, we have relatively little knowledge of the extent of interaction among these modules and their overall quantitative importance.

My research has encompassed the study of both positive and negative signaling by RTKs in C. elegans. I identified the C. elegans S0S-1 gene and showed that it is necessary for multiple RAS-mediated developmental signals. In addition, I demonstrated that there is a SOS-1-independent signaling during RAS-mediated vulval differentiation. By assessing signal outputs from various triple mutants, I have concluded that this SOS-1-independent signaling is not mediated by PTP-2/SHP-2 or the removal of inhibition by GAP-1/ RasGAP and it is not under regulation by SLI-1/Cb1. I speculate that there is either another exchange factor for RASor an as yet unidentified signaling pathway operating during RAS-mediated vulval induction in C. elegans.

In an attempt to uncover the molecular mechanisms of negative regulation of EGFR signaling by SLI-1/Cb1, I and two other colleagues codiscovered that RING finger domain of SLI-1 is partially dispensable for activity. This structure-function analysis shows that there is an ubiquitin protein ligase-independent activity for SLI-1 in regulating EGFR signaling. Further, we identified an inhibitory tyrosine of LET-23/ EGFR requiring sli-1(+)for its effects: removal of this tyrosine closely mimics loss of sli-1 but not loss of other negative regulator function.

By comparative analysis of two RTK pathways with similar signaling mechanisms, I have found that clr-1, a previously identified negative regulator of egl-15 mediated FGFR signaling, is also involved in let-23 EGFR signaling. The success of this approach promises a similar reciprocal test and could potentially extend to the study of other signaling pathways with similar signaling logic.

Finally, by correlating the developmental expression of lin-3 EGF to let-23 EGFR signaling activity, I demonstrated the existence of reciprocal EGF signaling in coordinating the morphogenesis of epithelia. This developmental logic of EGF signaling could provide a basis to understand a universal mechanism for organogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Studies of vibrational relaxation in excited electronic states of simple diatomic molecules trapped in solid rare-gas matrices at low temperatures are reported. The relaxation is investigated by monitoring the emission intensity from vibrational levels of the excited electronic state to vibrational levels of the ground electronic state. The emission was in all cases excited by bombardment of the doped rare-gas solid with X-rays.

The diatomics studied and the band systems seen are: N2, Vegard-Kaplan and Second Positive systems; O2, Herzberg system; OH and OD, A 2Σ+ - X2IIi system. The latter has been investigated only in solid Ne, where both emission and absorption spectra were recorded; observed fine structure has been partly interpreted in terms of slightly perturbed rotational motion in the solid. For N2, OH, and OD emission occurred from v' > 0, establishing a vibrational relaxation time in the excited electronic state of the order, of longer than, the electronic radiative lifetime. The relative emission intensity and decay times for different v' progressions in the Vegard-Kaplan system are found to depend on the rare-gas host and the N2 concentration, but are independent of temperature in the range 1.7°K to 30°K.

Part II

Static crystal field effects on the absorption, fluorescence, and phosphorescence spectra of isotopically mixed benzene crystals were investigated. Evidence is presented which demonstrate that in the crystal the ground, lowest excited singlet, and lowest triplet states of the guest deviate from hexagonal symmetry. The deviation appears largest in the lowest triplet state and may be due to an intrinsic instability of the 3B1u state. High resolution absorption and phospho- rescence spectra are reported and analyzed in terms of site-splitting of degenerate vibrations and orientational effects. The guest phosphorescence lifetime for various benzene isotopes in C6D6 and sym-C6H3D3 hosts is presented and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The functionalization of silicon surfaces with molecular catalysts for proton reduction is an important part of the development of a solar-powered, water-splitting device for solar fuel formation. The covalent attachment of these catalysts to silicon without damaging the underlying electronic properties of silicon that make it a good photocathode has proven difficult. We report the formation of mixed monolayer-functionalized surfaces that incor- porate both methyl and vinylferrocenyl or vinylbipyridyl (vbpy) moieties. The silicon was functionalized using reaction conditions analogous to those of hydrosilylation, but instead of a H-terminated Si surface, a chlorine-terminated Si precursor surface was used to produce the linked vinyl-modified functional group. The functionalized surfaces were characterized by time-resolved photoconductivity decay, X-ray photoelectron spectroscopy (XPS), electro- chemical, and photoelectrochemical measurements. The functionalized Si surfaces were well passivated, exhibited high surface coverage and few remaining reactive Si atop sites, had a very low surface recombination velocity, and displayed little initial surface oxidation. The surfaces were stable toward atmospheric and electrochemical oxidation. The surface coverage of ferrocene or bipyridine was controllably varied from 0 up to 30% of a monolayer without loss of the underlying electronic properties of the silicon. Interfacial charge transfer to the attached ferrocene group was relatively rapid, and a photovoltage of 0.4 V was generated upon illumination of functionalized n-type silicon surfaces in CH3CN. The immobilized bipyridine ligands bound transition metal ions, and thus enabled the assembly of metal complexes on the silicon surface. XPS studies demonstrated that [Cp∗Rh(vbpy)Cl]Cl, [Cp∗Ir(vbpy)Cl]Cl, and Ru(acac)2vbpy were assembled on the surface. For the surface prepared with iridium, x-ray absorption spectroscopy at the Ir LIII edge showed an edge energy and post-edge features virtually identical to a powder sample of [Cp∗Ir(bipy)Cl]Cl (bipy is 2,2 ́-bipyridyl). Electrochemical studies on these surfaces confirmed that the assembled complexes were electrochemically active.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical microscopy has become an indispensable tool for biological researches since its invention, mostly owing to its sub-cellular spatial resolutions, non-invasiveness, instrumental simplicity, and the intuitive observations it provides. Nonetheless, obtaining reliable, quantitative spatial information from conventional wide-field optical microscopy is not always intuitive as it appears to be. This is because in the acquired images of optical microscopy the information about out-of-focus regions is spatially blurred and mixed with in-focus information. In other words, conventional wide-field optical microscopy transforms the three-dimensional spatial information, or volumetric information about the objects into a two-dimensional form in each acquired image, and therefore distorts the spatial information about the object. Several fluorescence holography-based methods have demonstrated the ability to obtain three-dimensional information about the objects, but these methods generally rely on decomposing stereoscopic visualizations to extract volumetric information and are unable to resolve complex 3-dimensional structures such as a multi-layer sphere.

The concept of optical-sectioning techniques, on the other hand, is to detect only two-dimensional information about an object at each acquisition. Specifically, each image obtained by optical-sectioning techniques contains mainly the information about an optically thin layer inside the object, as if only a thin histological section is being observed at a time. Using such a methodology, obtaining undistorted volumetric information about the object simply requires taking images of the object at sequential depths.

Among existing methods of obtaining volumetric information, the practicability of optical sectioning has made it the most commonly used and most powerful one in biological science. However, when applied to imaging living biological systems, conventional single-point-scanning optical-sectioning techniques often result in certain degrees of photo-damages because of the high focal intensity at the scanning point. In order to overcome such an issue, several wide-field optical-sectioning techniques have been proposed and demonstrated, although not without introducing new limitations and compromises such as low signal-to-background ratios and reduced axial resolutions. As a result, single-point-scanning optical-sectioning techniques remain the most widely used instrumentations for volumetric imaging of living biological systems to date.

In order to develop wide-field optical-sectioning techniques that has equivalent optical performance as single-point-scanning ones, this thesis first introduces the mechanisms and limitations of existing wide-field optical-sectioning techniques, and then brings in our innovations that aim to overcome these limitations. We demonstrate, theoretically and experimentally, that our proposed wide-field optical-sectioning techniques can achieve diffraction-limited optical sectioning, low out-of-focus excitation and high-frame-rate imaging in living biological systems. In addition to such imaging capabilities, our proposed techniques can be instrumentally simple and economic, and are straightforward for implementation on conventional wide-field microscopes. These advantages together show the potential of our innovations to be widely used for high-speed, volumetric fluorescence imaging of living biological systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The signal recognition particle (SRP) targets membrane and secretory proteins to their correct cellular destination with remarkably high fidelity. Previous studies have shown that multiple checkpoints exist within this targeting pathway that allows ‘correct cargo’ to be quickly and efficiently targeted and for ‘incorrect cargo’ to be promptly rejected. In this work, we delved further into understanding the mechanisms of how substrates are selected or discarded by the SRP. First, we discovered the role of the SRP fingerloop and how it activates the SRP and SRP receptor (SR) GTPases to target and unload cargo in response to signal sequence binding. Second, we learned how an ‘avoidance signal’ found in the bacterial autotransporter, EspP, allows this protein to escape the SRP pathway by causing the SRP and SR to form a ‘distorted’ complex that is inefficient in delivering the cargo to the membrane. Lastly, we determined how Trigger Factor, a co-translational chaperone, helps SRP discriminate against ‘incorrect cargo’ at three distinct stages: SRP binding to RNC; targeting of RNC to the membrane via SRP-FtsY assembly; and stronger antagonism of SRP targeting of ribosomes bearing nascent polypeptides that exceed a critical length. Overall, results delineate the rich underlying mechanisms by which SRP recognizes its substrates, which in turn activates the targeting pathway and provides a conceptual foundation to understand how timely and accurate selection of substrates is achieved by this protein targeting machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of a thermoelectric material is judged by the size of its temperature de- pendent thermoeletric-figure-of-merit (zT ). Superionic materials, particularly Zn4Sb3 and Cu2Se, are of current interest for the high zT and low thermal conductivity of their disordered, superionic phase. In this work it is reported that the super-ionic materials Ag2Se, Cu2Se and Cu1.97Ag0.03Se show enhanced zT in their ordered, normal ion-conducting phases. The zT of Ag2Se is increased by 30% in its ordered phase as compared to its disordered phase, as measured just below and above its first order phase transition. The zT ’s of Cu2Se and Cu1.97Ag0.03Se both increase by more than 100% over a 30 K temperatures range just below their super-ionic phase transitions. The peak zT of Cu2Se is 0.7 at 406 K and of Cu1.97Ag0.03Se is 1.0 at 400 K. In all three materials these enhancements are due to anomalous increases in their Seebeck coefficients, beyond that predicted by carrier concentration measurements and band structure modeling. As the Seebeck coefficient is the entropy transported per carrier, this suggests that there is an additional quantity of entropy co-transported with charge carriers. Such co-transport has been previously observed via co-transport of vibrational entropy in bipolaron conductors and spin-state entropy in NaxCo2O4. The correlation of the temperature profile of the increases in each material with the nature of their phase transitions indicates that the entropy is associated with the thermodynamcis of ion-ordering. This suggests a new mechanism by which high thermoelectric performance may be understood and engineered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detection of biologically relevant targets, including small molecules, proteins, DNA, and RNA, is vital for fundamental research as well as clinical diagnostics. Sensors with biological elements provide a natural foundation for such devices because of the inherent recognition capabilities of biomolecules. Electrochemical DNA platforms are simple, sensitive, and do not require complex target labeling or expensive instrumentation. Sensitivity and specificity are added to DNA electrochemical platforms when the physical properties of DNA are harnessed. The inherent structure of DNA, with its stacked core of aromatic bases, enables DNA to act as a wire via DNA-mediated charge transport (DNA CT). DNA CT is not only robust over long molecular distances of at least 34 nm, but is also especially sensitive to anything that perturbs proper base stacking, including DNA mismatches, lesions, or DNA-binding proteins that distort the π-stack. Electrochemical sensors based on DNA CT have previously been used for single-nucleotide polymorphism detection, hybridization assays, and DNA-binding protein detection. Here, improvements to (i) the structure of DNA monolayers and (ii) the signal amplification with DNA CT platforms for improved sensitivity and detection are described.

First, improvements to the control over DNA monolayer formation are reported through the incorporation of copper-free click chemistry into DNA monolayer assembly. As opposed to conventional film formation involving the self-assembly of thiolated DNA, copper-free click chemistry enables DNA to be tethered to a pre-formed mixed alkylthiol monolayer. The total amount of DNA in the final film is directly related to the amount of azide in the underlying alkylthiol monolayer. DNA monolayers formed with this technique are significantly more homogeneous and lower density, with a larger amount of individual helices exposed to the analyte solution. With these improved monolayers, significantly more sensitive detection of the transcription factor TATA binding protein (TBP) is achieved.

Using low-density DNA monolayers, two-electrode DNA arrays were designed and fabricated to enable the placement of multiple DNA sequences onto a single underlying electrode. To pattern DNA onto the primary electrode surface of these arrays, a copper precatalyst for click chemistry was electrochemically activated at the secondary electrode. The location of the secondary electrode relative to the primary electrode enabled the patterning of up to four sequences of DNA onto a single electrode surface. As opposed to conventional electrochemical readout from the primary, DNA-modified electrode, a secondary microelectrode, coupled with electrocatalytic signal amplification, enables more sensitive detection with spatial resolution on the DNA array electrode surface. Using this two-electrode platform, arrays have been formed that facilitate differentiation between well-matched and mismatched sequences, detection of transcription factors, and sequence-selective DNA hybridization, all with the incorporation of internal controls.

For effective clinical detection, the two working electrode platform was multiplexed to contain two complementary arrays, each with fifteen electrodes. This platform, coupled with low density DNA monolayers and electrocatalysis with readout from a secondary electrode, enabled even more sensitive detection from especially small volumes (4 μL per well). This multiplexed platform has enabled the simultaneous detection of two transcription factors, TBP and CopG, with surface dissociation constants comparable to their solution dissociation constants.

With the sensitivity and selectivity obtained from the multiplexed, two working electrode array, an electrochemical signal-on assay for activity of the human methyltransferase DNMT1 was incorporated. DNMT1 is the most abundant human methyltransferase, and its aberrant methylation has been linked to the development of cancer. However, current methods to monitor methyltransferase activity are either ineffective with crude samples or are impractical to develop for clinical applications due to a reliance on radioactivity. Electrochemical detection of methyltransferase activity, in contrast, circumvents these issues. The signal-on detection assay translates methylation events into electrochemical signals via a methylation-specific restriction enzyme. Using the two working electrode platform combined with this assay, DNMT1 activity from tumor and healthy adjacent tissue lysate were evaluated. Our electrochemical measurements revealed significant differences in methyltransferase activity between tumor tissue and healthy adjacent tissue.

As differential activity was observed between colorectal tumor tissue and healthy adjacent tissue, ten tumor sets were subsequently analyzed for DNMT1 activity both electrochemically and by tritium incorporation. These results were compared to expression levels of DNMT1, measured by qPCR, and total DNMT1 protein content, measured by Western blot. The only trend detected was that hyperactivity was observed in the tumor samples as compared to the healthy adjacent tissue when measured electrochemically. These advances in DNA CT-based platforms have propelled this class of sensors from the purely academic realm into the realm of clinically relevant detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the representation of signal envelope is treated, motivated by the classical Hilbert representation in which the envelope is represented in terms of the received signal and its Hilbert transform. It is shown that the Hilbert representation is the proper one if the received signal is strictly bandlimited but that some other filter is more appropriate in the bandunlimited case. A specific alternative filter, the conjugate filter, is proposed and the overall envelope estimation error is evaluated to show that for a specific received signal power spectral density the proposed filter yields a lower envelope error than the Hilbert filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a novel class of algorithms for the solution of scattering and eigenvalue problems on general two-dimensional domains under a variety of boundary conditions, including non-smooth domains and certain "Zaremba" boundary conditions - for which Dirichlet and Neumann conditions are specified on various portions of the domain boundary. The theoretical basis of the methods for the Zaremba problems on smooth domains concern detailed information, which is put forth for the first time in this thesis, about the singularity structure of solutions of the Laplace operator under boundary conditions of Zaremba type. The new methods, which are based on use of Green functions and integral equations, incorporate a number of algorithmic innovations, including a fast and robust eigenvalue-search algorithm, use of the Fourier Continuation method for regularization of all smooth-domain Zaremba singularities, and newly derived quadrature rules which give rise to high-order convergence even around singular points for the Zaremba problem. The resulting algorithms enjoy high-order convergence, and they can tackle a variety of elliptic problems under general boundary conditions, including, for example, eigenvalue problems, scattering problems, and, in particular, eigenfunction expansion for time-domain problems in non-separable physical domains with mixed boundary conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. PREAMBLE AND SCOPE

Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.

II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS

Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.

Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.

A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.

III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa

An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.

The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first section of this thesis, two-dimensional properties of the human eye movement control system were studied. The vertical - horizontal interaction was investigated by using a two-dimensional target motion consisting of a sinusoid in one of the directions vertical or horizontal, and low-pass filtered Gaussian random motion of variable bandwidth (and hence information content) in the orthogonal direction. It was found that the random motion reduced the efficiency of the sinusoidal tracking. However, the sinusoidal tracking was only slightly dependent on the bandwidth of the random motion. Thus the system should be thought of as consisting of two independent channels with a small amount of mutual cross-talk.

These target motions were then rotated to discover whether or not the system is capable of recognizing the two-component nature of the target motion. That is, the sinusoid was presented along an oblique line (neither vertical nor horizontal) with the random motion orthogonal to it. The system did not simply track the vertical and horizontal components of motion, but rotated its frame of reference so that its two tracking channels coincided with the directions of the two target motion components. This recognition occurred even when the two orthogonal motions were both random, but with different bandwidths.

In the second section, time delays, prediction and power spectra were examined. Time delays were calculated in response to various periodic signals, various bandwidths of narrow-band Gaussian random motions and sinusoids. It was demonstrated that prediction occurred only when the target motion was periodic, and only if the harmonic content was such that the signal was sufficiently narrow-band. It appears as if general periodic motions are split into predictive and non-predictive components.

For unpredictable motions, the relationship between the time delay and the average speed of the retinal image was linear. Based on this I proposed a model explaining the time delays for both random and periodic motions. My experiments did not prove that the system is sampled data, or that it is continuous. However, the model can be interpreted as representative of a sample data system whose sample interval is a function of the target motion.

It was shown that increasing the bandwidth of the low-pass filtered Gaussian random motion resulted in an increase of the eye movement bandwidth. Some properties of the eyeball-muscle dynamics and the extraocular muscle "active state tension" were derived.