984 resultados para mangrove sediments
Resumo:
Five heavy mineral associations occur in the Paleocene and Eocene sediments recovered during Leg 81 of the Deep Sea Drilling Project (DSDP) in the SW Rockall area. Association 1, consisting of augite, iddingsite, and olivine, was derived from the basaltic rocks of the northern part of the Rockall Plateau. Association 2 consists of epidote group minerals, including piedmontite, and amphiboles of actinolite, actinolitic hornblende, and magnesio-hornblende compositions, and was derived from the metamorphic basement of south Greenland. Association 3 comprises garnet, augite, apatite, and edenitic and pargasitic amphiboles and has a provenance in the southern Rockall Plateau. Associations 4 (garnet, apatite, edenitic/pargasitic amphiboles) and 5 (garnet, apatite) are intrastratal solution derivatives of Association 3, with successive removal of first pyroxene and then amphibole with increasing depth of burial. Throughout the SW Rockall Plateau area there is a significant change in the spectrum of the above assemblages in the lower part of the Eocene. This change has been noted at Sites 403, 404, 553, and 555 and is defined by the last appearance of Association 2. This level therefore marks the cessation of sediment supply from southern Greenland and is the result of the final separation of Rockall and Greenland immediately prior to magnetic Anomaly 24.
Resumo:
At Sites 566, 567, and 570 of Leg 84, ophiolitic serpentinite basement was covered by a sequence of serpentinitic mud that was formed by weathering of the serpentinites under sea- or pore-water conditions. Several mineralogical processes were observed: (1) The serpentinitic mud that consists mainly of chrysotile was formed from the lizardite component of the serpentinites by alteration. (2) Slightly trioctahedral smectites containing nonexpandable mica layers, trioctahedral smectites containing nonexpandable chlorite layers, and swelling chlorites were presumably formed from detrital chlorite and/or serpentine. (3) The occurrence of tremolite, chlorite, analcime, and talc can be attributed to reworking of gabbroic ophiolite rocks. (4) Dolomite, aragonite, and Mg-calcite, all authigenic, occur in the serpentinitic mud.
Resumo:
Distribution, accumulation and diagenesis of surficial sediments in coastal and continental shelf systems follow complex chains of localized processes and form deposits of great spatial variability. Given the environmental and economic relevance of ocean margins, there is growing need for innovative geophysical exploration methods to characterize seafloor sediments by more than acoustic properties. A newly conceptualized benthic profiling and data processing approach based on controlled source electromagnetic (CSEM) imaging permits to coevally quantify the magnetic susceptibility and the electric conductivity of shallow marine deposits. The two physical properties differ fundamentally insofar as magnetic susceptibility mostly assesses solid particle characteristics such as terrigenous or iron mineral content, redox state and contamination level, while electric conductivity primarily relates to the fluid-filled pore space and detects salinity, porosity and grain-size variations. We develop and validate a layered half-space inversion algorithm for submarine multifrequency CSEM with concentric sensor configuration. Guided by results of modeling, we modified a commercial land CSEM sensor for submarine application, which was mounted into a nonconductive and nonmagnetic bottom-towed sled. This benthic EM profiler Neridis II achieves 25 soundings/second at 3-4 knots over continuous profiles of up to hundred kilometers. Magnetic susceptibility is determined from the 75 Hz in-phase response (90% signal originates from the top 50 cm), while electric conductivity is derived from the 5 kHz out-of-phase (quadrature) component (90% signal from the top 92 cm). Exemplary survey data from the north-west Iberian margin underline the excellent sensitivity, functionality and robustness of the system in littoral (~0-50 m) and neritic (~50-300 m) environments. Susceptibility vs. porosity cross-plots successfully identify known lithofacies units and their transitions. All presently available data indicate an eminent potential of CSEM profiling for assessing the complex distribution of shallow marine surficial sediments and for revealing climatic, hydrodynamic, diagenetic and anthropogenic factors governing their formation.
Resumo:
Since being first discovered in the Blake-Bahama region of the west Atlantic in the 1970s (Hollister, Ewing, et al., 1972, doi:10.2973/dsdp.proc.11.1972), submarine gas hydrates have been identified in the continental margin worldwide. Ocean Drilling Program (ODP) Leg 164 was the first drilling designated to study the occurrence and distribution of natural gas hydrates in Blake Ridge where a well developed, distinct BSR (Bottom Simulating Reflector) has been identified (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). It has been reported there is a prominent discrepancy between the BSR and the base of gas hydrate stability (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996; Ruppel, 1997, doi:10.1130/0091-7613(1997)025<0699:ACTOAT>2.3.CO;2), though theoretically they should be at the same depth. Natural gas hydrate in marine sediments coexists with sediment particles, so detailed delineation of sediment geochemistry will be of benefit to solve this apparent discrepancy. The main objectives of this study are to supply background data of the major chemical compositions of sediments from a hydrated sediment section.
Resumo:
Acetate and hydrogen concentrations in pore fluids were measured in samples taken at seven sites from southern Hydrate Ridge (SHR) offshore Oregon, USA. Acetate concentrations ranged from 3.17 to 2515 µM. The maximum acetate concentrations occurred at Site 1251, which was drilled on a slope basin to the east of SHR at depths just above the bottom-simulating reflector (BSR) that marks the boundary of gas hydrate stability. Acetate maxima and localized high acetate concentrations occurred at the BSR at all sites and frequently corresponded with areas of gas hydrate accumulation, suggesting an empirical relationship. Acetate concentrations were typically at a minimum near the seafloor and above the sulfate/methane interface, where sulfate-reducing bacteria may consume acetate. Hydrogen concentrations in pressure core samples ranged from 16.45 to 1036 parts per million by volume (ppmv). In some cases, hydrogen and acetate concentrations were elevated concurrently, suggesting a positive correlation. However, sampling of hydrogen was limited in comparison to acetate, so any relationships between the two analytes, if present, were difficult to discern.
Resumo:
Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m**2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been proven using 14C-radiolabelled substrates for methanogenesis, bacterial cell counts and intact phospholipids. Altogether, these results point to an overlap of abiotic thermal degradation reactions going on in the same part of the sedimentary column as where a deep biosphere exists. The organic matter preserved in Nankai Trough sediments is of the type that generates putative feedstocks for microbial activity, namely oxygenated compounds and hydrocarbons. Furthermore, the rates of thermal degradation calculated from the kinetic model closely resemble rates of respiration and electron donor consumption independently measured in other deep biosphere environments. We deduce that abiotically driven degradation reactions have provided substrates for microbial activity in deep sediments at this convergent continental margin.