960 resultados para light-scattering center super-resolution near-field structure (LSC-Super-RENS) nonlinearity
Resumo:
The edible blue-green alga, Nostoc sphaeroides Kutzing, is able to form microcolonies and spherical macrocolonies. It has been used as a potent herbal medicine and dietary supplement for centuries because of its nutraceutical and pharmacological benefits. However, limited information is available on the development of the spherical macrocolonies and the environmental factors that affect their structure. This report described the morphogenesis of N. sphaeroides from single trichomes to macrocolonies. During the process, most structural features of macrocolonies of various sizes were dense maculas, rings, the compact core and the formation of liquid core; and the. laments within the macrocolonies showed different lengths and arrays depending on the sizes of macrocolonies. Meanwhile temperature and light intensity also strongly affected the internal structure of macrocolonies. As microcolonies further increased in size to form 30 mm macrocolonies, the colonies differentiated into distinct outer, middle and inner layers. The. laments of the outer layer showed higher maximum photosynthetic rates, higher light saturation point, and higher photosynthetic effciency than those of the inner layer; whereas the. laments of the inner layer had a higher content of chlorophyll a and phycobiliproteins than those of the outer layer. The results obtained in this study were important for the mass cultivation of N. sphaeroides as a nutraceutical product. (c) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
Endothelial filopodia play key roles in guiding the tubular sprouting during angiogenesis. However, their dynamic morphological characteristics, with the associated implications in cell motility, have been subjected to limited investigations. In this work, the interaction between endothelial cells and extracellular matrix fibrils was recapitulated in vitro, where a specific focus was paid to derive the key morphological parameters to define the dynamics of filopodium-like protrusion during cell motility. Based on one-dimensional gelatin fibrils patterned by near-field electrospinning (NFES), we study the response of endothelial cells (EA.hy926) under normal culture or ROCK inhibition. It is shown that the behaviour of temporal protrusion length versus cell motility can be divided into distinct modes. Persistent migration was found to be one of the modes which permitted cell displacement for over 300 μm at a speed of approximately 1 μm min-1. ROCK inhibition resulted in abnormally long protrusions and diminished the persistent migration, but dramatically increased the speeds of protrusion extension and retraction. Finally, we also report the breakage of protrusion during cell motility, and examine its phenotypic behaviours. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. © 2009 Optical Society of America.
Resumo:
One of the most important issues facing the helicopter industry today is helicopter noise, in particular transonic rotor noise. It is the main factor limiting cruise speeds, and there is real demand for efficient and reliable prediction methods which can be used in the rotor design process. This paper considers the Ffowcs Williams-Hawkings equation applied to a permeable control surface. The surface is chosen to be as small as possible, while enclosing both the blade and any transonic flow regions. This allows the problematic quadrupole term to always be neglected, and requires only near field CFD input data. It is therefore less computationally intensive than existing prediction methods, and moreover retains the physical interpretation of the sources in terms of thickness, loading and shock-associated noise. A computer program has been developed which implements the permeable surface form of retarded time formulation. The program has been validated and subsequently used to validate an acoustic 2-D CFD code. It is fast and reliable for subsonic motion, but it is demonstrated that it cannot be used at high subsonic or supersonic speeds. A second computer program implementing a more general formulation has also been developed and is presently being validated. This general formulation can be applied at high subsonic and supersonic speeds, except under one specific condition. © 2002 by the author(s). Published by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
The rocking response of structures subjected to strong ground motions is a problem of 'several scales'. While small structures are sensitive to acceleration pulses acting successively, large structures are more significantly affected by coherent low frequency components of ground motion. As a result, the rocking response of large structures is more stable and orderly, allowing effective isolation from the ground without imminent danger of overturning. This paper aims to characterize and predict the maximum rocking response of large and flexible structures to earthquakes using an idealized structural model. To achieve this, the maximum rocking demand caused by different earthquake records was evaluated using several ground motion intensity measures. Pulse-type records which typically have high peak ground velocity and lower frequency content caused large rocking amplitudes, whereas non-pulse type records caused random rocking motion confined to small rocking amplitudes. Coherent velocity pulses were therefore identified as the primary cause of significant rocking motion. Using a suite of pulse-type ground motions, it was observed that idealized wavelets fitted to velocity pulses can adequately describe the rocking response of large structures. Further, a parametric analysis demonstrates that pulse shape parameters affect the maximum rocking response significantly. Based on these two findings, a probabilistic analysis method is proposed for estimating the maximum rocking demand to pulse-type earthquakes. The dimensionless demand maps, produced using these methods, have predictive power in the near-field provided that pulse period and amplitude can be estimated a priori. Use of this method within a probabilistic seismic demand analysis framework is briefly discussed. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
We demonstrate the design, fabrication and experimental characterization of submicron-scale silicon waveguide fabricated by local oxidation of silicon and provide guidelines for controlling its profile. Near field measurements shows submicron confinement of the optical mode. © 2010 Optical Society of America.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. © 2009 Optical Society of America.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. © 2009 Optical Society of America.
Resumo:
Cellular behavior is strongly influenced by the architecture and pattern of its interfacing extracellular matrix (ECM). For an artificial culture system which could eventually benefit the translation of scientific findings into therapeutic development, the system should capture the key characteristics of a physiological microenvironment. At the same time, it should also enable standardized, high throughput data acquisition. Since an ECM is composed of different fibrous proteins, studying cellular interaction with individual fibrils will be of physiological relevance. In this study, we employ near-field electrospinning to create ordered patterns of collagenous fibrils of gelatin, based on an acetic acid and ethyl acetate aqueous co-solvent system. Tunable conformations of micro-fibrils were directly deposited onto soft polymeric substrates in a single step. We observe that global topographical features of straight lines, beads-on-strings, and curls are dictated by solution conductivity; whereas the finer details such as the fiber cross-sectional profile are tuned by solution viscosity. Using these fibril constructs as cellular assays, we study EA.hy926 endothelial cells' response to ROCK inhibition, because of ROCK's key role in the regulation of cell shape. The fibril array was shown to modulate the cellular morphology towards a pre-capillary cord-like phenotype, which was otherwise not observed on a flat 2-D substrate. Further facilitated by quantitative analysis of morphological parameters, the fibril platform also provides better dissection in the cells' response to a H1152 ROCK inhibitor. In conclusion, the near-field electrospun fibril constructs provide a more physiologically-relevant platform compared to a featureless 2-D surface, and simultaneously permit statistical single-cell image cytometry using conventional microscopy systems. The patterning approach described here is also expected to form the basics for depositing other protein fibrils, seen among potential applications as culture platforms for drug screening.
Resumo:
Hydrodynamic properties of five newly isolated algal extracellular polysaccharides with putative adhesive properties are described, using a combination of size exclusion chromatography, total or 'multi-angle' laser light scattering and analytical ultracentrifugation. The respective polysaccharides had been extracted from four filamentous cyanobacteria: Microcoleus vaginatus, Scytonema javanicum, Phormidium tenue and Nostoc sp. and a coccoid single-cell green. algae Desmococcus olivaceus that had been separated from desert algal crusts of the Chinese Tegger Desert. SEC/MALLS experiments showed that the saccharides had, diverse-weight average molecular weights ranging from 4000 to 250,000 g/mol and all five showed either bi-modal or tri-modal molecular weight distribution profiles. Use of the Mark-Houwink-Kuhn-Sakurada (MHKS) scaling relationship between sedimentation coefficient and (weight average) molecular weight for the five samples, assuming a homologous conformation series revealed an MHKS b exponent of (0.33 +/- 0.04), suggesting a conformation between that of a stiff rod (b similar to 0.18) and a random coil (b similar to 0.4-0.5), i.e. a 'flexible rod' or 'stiff coil'. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Ridge-waveguide AlGaInAs/AlGaAs distributed feedback lasers with lattice-matched GaInP gratings were fabricated and their light-current characteristics, spectrum and far-field characteristics were measured. On the basis of our experimental results we analyze the effect of the electron stopper layer on light-current performance using the commercial laser simulation software PICS3D. The simulator is based on the self-consistent solution of drift diffusion equations, the Schrodinger equation, and the photon rate equation. The simulation results suggest that, with the use of a 80 nm-width p-doped Al0.6GaAs electron stopper layer, the slope efficiency can be increased and the threshold current can be reduced by more than 10 mA.
Resumo:
The fabrication of plasmonic very-small-aperture lasers is demonstrated in this letter. It is an integration of the surface plasmon structures and very-small-aperture lasers (VSAL). The experimental and numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field, and the power output can be enhanced 140% of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope. (C) 2007 American Institute of Physics.
Resumo:
Eu ions doped SiO2 thin films, SiO2( Eu), were prepared by co-sputtering of SiO2 and Eu2O3 and Eu ion implantation into thermally grown SiO2 films. The Eu-L-3-edge X-ray absorption near edge structure (XANES) spectra of SiO2(Eu) films show a doublet absorption peak structure with energy difference of 7 eV, which indicates the conversion of Eu3+ to Eu2+ at high annealing temperature in N-2. The strong blue luminescence of SiO2(Eu) films prepared by ions implantation after films annealed above 1100 degreesC confirms the above argument.
Resumo:
Fabricated one-dimensional (1D) materials often have abundant structural defects. Experimental observation and numerical calculation indicate that the broken translation symmetry due to structural defects may play a more important role than the quantum confinement effect in the Raman features of optical phonons in polar semiconductor quantum wires such as SiC nanorods, (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
GaN epilayers grown on sapphire substrates nitridated for various lengthy periods were investigated by light scattering tomography (LST) and Raman scattering. In the LST images of the plane-view epilayers, the light scattering defects distribute in [<11(2)over bar 0>] directions. The defect density is lower in epilayer grown on substrate nitridated for a longer period. The defects are believed to be straight threading edge dislocations on {<1(1)over bar 00>} planes. The Raman shift of E-2 mode is larger in the sample grown on substrate nitridated for a longer period. Our results show that the stress is higher in the sample with fewer dislocations.