997 resultados para ion hopping
Resumo:
Thiosemicarbazone derivatives have been used as ion carriers for the preparation of PVC-matrix based mercury(II)-selective membrane sensors. The electrodes give near-Nernstian responses in the linear concentration range of 1.0×10-1-5.0×10-6 M with detection limits of the order of 10-6 M. The stable potentiometric signals are obtained within a short time period of 20-25s. The effect of different plasticizers has been studied and dioctylsebacate (DOS) found to give a better response in comparison to other plasticizers. Selectivity coefficient values (log KPotHg,M) have been evaluated using fixed interference method. Better selectivity for mercury(II) ions is observed over many of the monovalent (Na+, K+ and NH4+) and divalent ions (Mg2+, Ca2+, Zn2+, Pb2+, Ni2+, Co2+, etc.). The sensors have also been used as indicator electrodes in potentiometric titration of mercury(II) ions with EDTA and its determination in synthetic water samples.
Resumo:
Synthetic procedures for new mixed-donor macrocycle compounds were reported. The macrocyclic compounds were used in solvent extraction metal picrates such as Ag+, Hg2+, Cd2+, Zn2+, Cu2+, Ni2+, Mn2+, Pb2+, and Co2+. The metal picrate extractions were investigated at 25±0.1°C with the aid of UV-visible spectrometry. It was found that 6,7,9,10,12,13,23,24-octahydro-19H,26Hdibenzo[h,t](1,4,7,13,16,22,10,19) dioxatetrathiadiazasiclotetracosine-20,27(21H,28H)-dione showed selectivity towards Ag+, Hg2+, and Cd2+ among the other metals. The extraction constants (Log Kex) and complex compositions were determined for the Ag+ and Hg2+ complexes for this compound and 9,10,12,13,23,24,26,27,29,30-decahydro-5H,15H-dibenzo-[h,w][1,4,7,13,16,19,25-,10,22] dioxapentathiadiazacycloheptacosine-6,16(7H,17H)-dione.
Resumo:
A novel ion-bonded discotic complex was prepared from 2,3,6,7,10,11-hexakis(N,N-dimethylaminopropylaminocarbonylmethoxy)triphenylene (HDTP) and 4'-dodecyloxybiphenyl-4-carboxylic acid (DBC) by ionic self-assembly (ISA) route and characterized by Fourier transform infrared (FTIR) spectrum. We found that the complex can self-assemble into stable gels in aromatic hydrocarbons. Nanofibers with diameters of 50-130 nm were observed in the gels by transmission electron micrograph (TEM).
Resumo:
We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.
Resumo:
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization using an ion-bonded macromolecular RAFT agent (macro-RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6-bis(bromomethyl)-isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion-bonded supramolecular macro-RAFT agent was obtained through the interaction between the tertiary amino group and 2-dodecylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid (DMP). Finally, ion-bonded amphiphilic miktoarm star copolymer, (PSt)(2)-poly(N-isopropyl-acrylamide)(2), was prepared by RAFT polymerization of N-isopropylacrylamide (NIPAM) in the presence of the supramolecular macro-RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of H-1-NMR, FTIR, and GPC techniques. (c) 2008 Wiley Periodicals, Inc.
Resumo:
The electrospray ionization ion trap multiple-stage tandem mass spectrometry (ESI-MSn) and electrospray ionization Fourier transform ion cyclotron resonance multiple-stage tandem mass spectrometry (ESI-FT-ICR-MSn) have been applied successfully to the direct investigation of a number of dibenzocyclooctadiene lignan constituents from the methanol extracts of the Fructus Schisandrae in the positive ion mode. The detailed structural characterization of the same skeleton and different peripheral substituents had been studied and the precise elemental compositions of ions at high mass resolution had been obtained. So the fragmentation mechanisms could be clarified.
Resumo:
Electrospray ionization mass spectrometry (ESI-MS) was used to investigate the binding of 13 alkaloids to two GC-rich DNA duplexes which are critical sequences in human survivin promoter. Negative ion ESI-MS was first applied to screen the binding of the alkaloids to the duplexes. Six alkaloids (including berberine, jatrorrhizine, palmatine, reserpine, berbamine, and tetrandrine) show complexation with the target DNA sequences. Relative binding affinities were estimated from the negative ion ESI data, and the alkaloids show a binding preference to the duplex with higher GC content. Positive ion ESI mass spectra of the complexes were also recorded and compared with those obtained in negative ion mode.
Resumo:
Formation and stabilities of four 14-mer intermolecular DNA triplexes, consisting of third strands with repeating sequence CTCT, CCTT, CTT, or TTT, were studied by electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) in the gas phase. The gas-phase stabilities of the triplexes were compared with their CD spectra and melting behaviors in solution, and parallel correlation between two phases were obtained. In the presence of 20 mm NH4+ (pH 5.5), the formation of the TTT triplex was not detected in both solution and the gas phase.
Resumo:
We propose a simple but efficient, rapid, and quantitative ion-responsive micelle system based on counter-anion exchange of a surfactant with an imidazolium unit. The ion-exchange reaction results in the amphiphilic-to-hydrophobic transition of the imidazolium salt, leading to the destruction of the micelles, which has been successfully applied to control led release and emulsification.
Resumo:
Here, we report a simple and Sensitive colorimetric detection method for Hg2+ ions With a tunable detection range based on DNA oligonucleotides and unmodified gold nanoparticles (DNA/AuNPs) sensing system. Complementary DNA strands with T-T mismatches could effectively protect AuNPs from salt-induced aggregation. While in the presence of Hg2+ ions T-Hg2+-T coordination chemistry leads to the formation of DNA duplexes, and AuNPs are less well protected thus aggregate at the same salt concentration, accompanying by color change from red to blue. By rationally varying the number of T-T mismatches in DNA oligonucleotides, the detection range could be tuned.
Resumo:
A novel Ruthenium(II) tris(bipyridine)-based solid-state electrochemiluminescence (ECL) sensor was developed in this paper. The sensor was fabricated by immobilising tris(2,2'-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+)) in sulfonic-functionalised porous titania (TiO2-SO3H) nanoparticles via an ion exchange strategy, followed by employing environment friendly and stable biopolymer chitosan (CHIT) to entrap Ru(bpy)(3)(2+)/TiO2-SO3H onto the ITO electrode.
Resumo:
A new approach to one-dimensional organization of gold nanoparticles (2-4 nm) is described, using poly(4-vinylpyridine) (P4VP) molecular chain as a template with the mediation of free Cu2+ ion coordination. The assembly was conducted on freshly prepared mica surfaces and in aqueous solution, respectively. The surface assembly was characterized by tapping mode atomic force microscopy (AFM), observing the physisorbed molecules in their chain-like conformation with an average height of 0.4 nm.
Resumo:
A new fluorescent sensor for the sensitive and selective detection of cyanide (CN-) in aqueous media was developed herein. The sensing approach is based on CN--modulated quenching behavior of Cu2+ toward the photoluminescence (PL) of CdTe quantum dots (QDs). In the presence of CN-, the PL of QDs that have been quenched by Cu2+ was found to be efficiently recovered, which then allows the detection of CN- in a very simple approach. Experimental results showed that the pH of the buffer solution, concentration of copper ions, and size of CdTe QDs all influenced the response of the sensor to CN-. Under the optimal conditions, a good linear relationship between the PL intensity and the concentration of CN- can be obtained in the range of 3.0 x 10(-7) to 1.2 x 10(-5) M, with a detection limit as low as 1.5 x 10(-7) M. In addition, the present fluorescent sensor possesses remarkable selectivity for cyanide over other anions, and negligible influences were observed on the cyanide detection by the coexistence of other anions or biological species (such as albumin and typical blood constituents).