980 resultados para industrial classification
Resumo:
A comienzos del siglo XX, Detroit era una ciudad dinámica en pleno desarrollo. Pronto se convirtió en la cuarta ciudad de Estados Unidos, la capital de la naciente industria automovilística. El crecimiento se prolongó hasta finales de los años 50, cuando, a pesar del auge económico de Estados Unidos y de su área metropolitana, Detroit comenzó a mostrar los primeros signos de estancamiento. La crisis se ha prolongado hasta hoy, cuando Detroit constituye el paradigma de la ciudad industrial en declive. Estas dos imágenes contrapuestas, el auge y la crisis, no parecen explicar por sí mismas las causas de la intensidad y persistencia del declive de Detroit. Analizar las interacciones entre crecimiento económico, políticas públicas locales y desarrollo urbano a lo largo del tiempo permitirá subrayar las continuidades y comprender en qué medida el declive de Detroit ancla sus raíces en el modelo planteado durante la etapa de auge.
Resumo:
This paper describes the development of neural model-based control strategies for the optimisation of an industrial aluminium substrate disk grinding process. The grindstone removal rate varies considerably over a stone life and is a highly nonlinear function of process variables. Using historical grindstone performance data, a NARX-based neural network model is developed. This model is then used to implement a direct inverse controller and an internal model controller based on the process settings and previous removal rates. Preliminary plant investigations show that thickness defects can be reduced by 50% or more, compared to other schemes employed. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Support vector machine (SVM) is a powerful technique for data classification. Despite of its good theoretic foundations and high classification accuracy, normal SVM is not suitable for classification of large data sets, because the training complexity of SVM is highly dependent on the size of data set. This paper presents a novel SVM classification approach for large data sets by using minimum enclosing ball clustering. After the training data are partitioned by the proposed clustering method, the centers of the clusters are used for the first time SVM classification. Then we use the clusters whose centers are support vectors or those clusters which have different classes to perform the second time SVM classification. In this stage most data are removed. Several experimental results show that the approach proposed in this paper has good classification accuracy compared with classic SVM while the training is significantly faster than several other SVM classifiers.
Resumo:
An absolute erythrocytosis is present when the red cell mass is raised and the haematocrit is elevated above prescribed limits. Causes of an absolute erythrocytosis can be primary where there is an intrinsic problem in the bone marrow and secondary where there an event outside the bone marrow driving erythropoiesis. This can further be divided into congenital and acquired causes. There remain an unexplained group idiopathic erythrocytosis. Investigation commencing with thorough history taking and examination and then investigation depending on initial features is required. Clear simple criteria for polycythaemia vera are now defined. Those who do not fulfil these criteria require further investigation depending on the clinical scenario and initial results. The erythropoietin level provides some guidance as to the direction in which to proceed and the order and extent of investigation necessary in an individual patient. It should thus be possible to make an accurate diagnosis in the majority of patients.