977 resultados para in vitro allelopathic activity
Resumo:
Synthetic lethality represents an anticancer strategy that targets tumor specific gene defects. One of the most studied application is the use of PARP inhibitors (e.g. olaparib) in BRCA1/2-less cancer cells. In BRCA2-defective tumors, olaparib (OLA) inhibits DNA single-strand break repair, while BRCA2 mutations hamper homologous recombination (HR) repair. The simultaneous impairment of those pathways leads BRCA-less cells to death by synthetic lethality. The projects described in this thesis were aimed at extending the use of OLA in cancer cells that do not carry a mutation in BRCA2 by combining this drug with compounds that could mimic a BRCA-less environment via HR inhibition. We demonstrated the effectiveness of our “fully small-molecule induced synthetic lethality” by using two different approaches. In the direct approach (Project A), we identified a series of neo-synthesized compounds (named RAD51-BRCA2 disruptors) that mimic BRCA2 mutations by disrupting the RAD51-BRCA2 interaction and thus the HR pathway. Compound ARN 24089 inhibited HR in human pancreatic adenocarcinoma cell line and triggered synthetic lethality by synergizing with OLA. Interestingly, the observed synthetic lethality was triggered by tackling two biochemically different mechanisms: enzyme inhibition (PARP) and protein-protein disruption (RAD51-BRCA2). In the indirect approach (Project B), we inhibited HR by interfering with the cellular metabolism through inhibition of LDH activity. The obtained data suggest an LDH-mediated control on HR that can be exerted by regulating either the energy supply needed to this repair mechanism or the expression level of genes involved in DNA repair. LDH inhibition also succeeded in increasing the efficiency of OLA in BRCA-proficient cell lines. Although preliminary, these results highlight a complex relationship between metabolic reactions and the control of DNA integrity. Both the described projects proved that our “fully small-molecule-induced synthetic lethality” approach could be an innovative approach to unmet oncological needs.
Resumo:
AGC1 deficiency is a rare demyelinating disease caused by mutations in the SLC25A12 gene, which encodes for the mitochondrial glutamate-aspartate carrier 1 (AGC1/Alarar), highly expressed in the central nervous system. In neurons, impairment in AGC1 activity leads to reduction in N-acetyl-aspartate, the main lipid precursor for myelin synthesis (Profilo et al., 2017); in oligodendrocytes progenitors cells, AGC1 down regulation has been related to early arrest proliferation and premature differentiation (Petralla et al., 2019). Additionally, in vivo AGC1 deficiency models i.e., heterozygous mice for AGC1 knock-out and neurospheres from their subventricular zone, respectively, showed a global decrease in cells proliferation and a switch in neural stem cells (NSCs) commitment, with specific reduction in OPCs number and increase in neural and astrocytic pools (Petralla et al., 2019). Therefore, the present study aims to investigate the transcriptional and epigenetic regulation underlying the alterations observed in OPCs and NSCs biological mechanisms, in either AGC1 deficiency models of Oli-neu cells (murine immortalized oligodendrocytes precursors cells), partially silenced by a shRNA for SLC25A12 gene, and SVZ-derived neurospheres from AGC1+/- mice. Western blot and immunofluorescence analysis revealed significant variations in the expression of transcription factors involved in brain cells’ proliferation and differentiation, in association with altered histone post-translational modifications, as well as histone acetylases (HATs) and deacetylases (HDACs) activity/expression, suggesting an improper transcriptional and epigenetic regulation affecting both AGC1 deficiency in vitro models. Furthermore, given the large role of acetylation in controlling in specific time-windows OPC maturation (Hernandez and Casaccia; 2015), pharmacological HATs/HDACs inhibitions were performed, confirming the involvement of chromatin remodelling enzymes in the altered proliferation and early differentiation observed in the AGC1 deficiency models of siAGC1 Oli-neu cells and AGC1+/- mice-derived neurospheres.
Resumo:
The thesis investigates two different in vitro aspects of Chlamydia trachomatis (CT). The thesis analyzes the effect of different sugars on CT infectivity. which is investigated on HeLa cells after 2 hour-incubation of elementary bodies (EBs) with glucose, sucrose or mannitol. Sugars effect on EB membrane fluidity is investigated by fluorescence anisotropy measurement, whereas changes in lipopolysaccharide exposure are examined by cytofluorimetric analysis. By Western blot experiments, the phosphorylation state of Focal Adhesion Kinase in cells infected with EBs pre-incubated with sugars it’s explored. Sugar significantly increase infectivity, acting on the EB structure. Sugars induce an increase of EB membrane fluidity, leading to changes in LPS exposure. After incubation with sucrose and mannitol, EBs lead to higher FAK phosphorylation, enhancing activation of anti-apoptotic and proliferative signals in the host. Secondly, the thesis explores the protective effect of different Lactobacilli against CT infection: Lactobacillus crispatus and Lactobacillus reuteri. CT infectivity is evaluated after host cells were treated for 1 hour with diluted supernatant cell-free fraction or with the bacterial cells. Assessed that L.crispatus is more protective than L.reuteri, lactic acid production is evaluated by HPLC. Subsequently Lactate dehydrogenases activity is evaluated by resazurin assay and by LC-MS. Then, D-lactate dehydrogenase specific activity has been investigated by measuring NADH formation. Afterwards, addition of D or L-lactic acid to L.reuteri supernatant has been performed and their effect in promoting protection in the host cells assessed. Then a metabolic analysis has been carried out by real-time measurement of mitochondrial respiration after treatment. Finally, histone acetylation and lactylation, and gene and protein expression of relevant targets, have been investigated. It is shown that the D isomer is more efficient in conferring protection, causing a shift in the host cell metabolic profile and a pattern of histone modifications that changes the expression of important targets.
Resumo:
Snakebite is a neglected disease and serious health problem in Brazil, with most bites being caused by snakes of the genus Bothrops. Although serum therapy is the primary treatment for systemic envenomation, it is generally ineffective in neutralizing the local effects of these venoms. In this work, we examined the ability of 7,8,3'-trihydroxy-4'-methoxyisoflavone (TM), an isoflavone from Dipteryx alata, to neutralize the neurotoxicity (in mouse phrenic nerve-diaphragm preparations) and myotoxicity (assessed by light microscopy) of Bothrops jararacussu snake venom in vitro. The toxicity of TM was assessed using the Salmonella microsome assay (Ames test). Incubation with TM alone (200 μg/mL) did not alter the muscle twitch tension whereas incubation with venom (40 μg/mL) caused irreversible paralysis. Preincubation of TM (200 μg/mL) with venom attenuated the venom-induced neuromuscular blockade by 84% ± 5% (mean ± SEM; n = 4). The neuromuscular blockade caused by bothropstoxin-I (BthTX-I), the major myotoxic PLA2 of this venom, was also attenuated by TM. Histological analysis of diaphragm muscle incubated with TM showed that most fibers were preserved (only 9.2% ± 1.7% were damaged; n = 4) compared to venom alone (50.3% ± 5.4% of fibers damaged; n = 3), and preincubation of TM with venom significantly attenuated the venom-induced damage (only 17% ± 3.4% of fibers damaged; n = 3; p < 0.05 compared to venom alone). TM showed no mutagenicity in the Ames test using Salmonella strains TA98 and TA97a with (+S9) and without (-S9) metabolic activation. These findings indicate that TM is a potentially useful compound for antagonizing the neuromuscular effects (neurotoxicity and myotoxicity) of B. jararacussu venom.
Resumo:
Hydroxyurea (HU), or hydroxycarbamide, is used for the treatment of some myeloproliferative and neoplastic diseases, and is currently the only drug approved by the FDA for use in sickle cell disease (SCD). Despite the relative success of HU therapy for SCD, a genetic disorder of the hemoglobin β chain that results in red-cell sickling, hemolysis, vascular inflammation and recurrent vasoocclusion, the exact mechanisms by which HU actuates remain unclear. We hypothesized that HU may modulate endothelial angiogenic processes, with important consequences for vascular inflammation. The effects of HU (50-200 μM; 17-24 h) on endothelial cell functions associated with key steps of angiogenesis were evaluated using human umbilical vein endothelial cell (HUVEC) cultures. Expression profiles of the HIF1A gene and the miRNAs 221 and 222, involved in endothelial function, were also determined in HUVECs following HU administration and the direct in vivo antiangiogenic effects of HU were assessed using a mouse Matrigel-plug neovascularization assay. Following incubation with HU, HUVECs exhibited high cell viability, but displayed a significant 75% inhibition in the rate of capillary-like-structure formation, and significant decreases in proliferative and invasive capacities. Furthermore, HU significantly decreased HIF1A expression, and induced the expression of miRNA 221, while downregulating miRNA 222. In vivo, HU reduced vascular endothelial growth factor (VEGF)-induced vascular development in Matrigel implants over 7 days. Findings indicate that HU is able to inhibit vessel assembly, a crucial angiogenic process, both in vitro and in vivo, and suggest that some of HU's therapeutic effects may occur through novel vascular mechanisms.
Resumo:
To characterize the relaxation induced by BAY 41-2272 in human ureteral segments. Ureter specimens (n = 17) from multiple organ human deceased donors (mean age 40 ± 3.2 years, male/female ratio 2:1) were used to characterize the relaxing response of BAY 41-2272. Immunohistochemical analysis for endothelial and neuronal nitric oxide synthase, guanylate cyclase stimulator (sGC) and type 5 phosphodiesterase was also performed. The potency values were determined as the negative log of the molar to produce 50% of the maximal relaxation in potassium chloride-precontracted specimens. The unpaired Student t test was used for the comparisons. Immunohistochemistry revealed the presence of endothelial nitric oxide synthase in vessel endothelia and neuronal nitric oxide synthase in urothelium and nerve structures. sGC was expressed in the smooth muscle and urothelium layer, and type 5 phosphodiesterase was present in the smooth muscle only. BAY 41-2272 (0.001-100 μM) relaxed the isolated ureter in a concentration dependent manner, with a potency and maximal relaxation value of 5.82 ± 0.14 and 84% ± 5%, respectively. The addition of nitric oxide synthase and sGC inhibitors reduced the maximal relaxation values by 21% and 45%, respectively. However, the presence of sildenafil (100 nM) significantly potentiated (6.47 ± 0.10, P <.05) this response. Neither glibenclamide or tetraethylammonium nor ureteral urothelium removal influenced the relaxation response by BAY 41-2272. BAY 41-2272 relaxes the human isolated ureter in a concentration-dependent manner, mainly by activating the sGC enzyme in smooth muscle cells rather than in the urothelium, although a cyclic guanosine monophosphate-independent mechanism might have a role. The potassium channels do not seem to be involved.
Resumo:
Summary This study aimed to evaluate the impact of vitrification on membrane lipid profile obtained by mass spectrometry (MS) of in vitro-produced bovine embryos. Matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) has been used to obtain individual embryo membrane lipid profiles. Due to conditions of analysis, mainly membrane lipids, most favorably phosphatidylcholines (PCs) and sphingomyelins (SMs) have been detected. The following ions described by their mass-to-charge ratio (m/z) and respective attribution presented increased relative abundance (1.2-20×) in the vitrified group: 703.5 [SM (16:0) + H]+; 722.5 [PC (40:3) + Na]+; 758.5 [PC (34:2) + H]+; 762.5 [PC (34:0) + H]+; 790.5 [PC (36:0) + H]+ and 810.5 [PC (38:4) + H]+ and/or [PC (36:1) + Na]+. The ion with a m/z 744.5 [PCp (34:1) and/or PCe (34:2)] was 3.4-fold more abundant in the fresh group. Interestingly, ions with m/z 722.5 or 744.5 indicate the presence of lipid species, which are more resistant to enzymatic degradation as they contain fatty acyl residues linked through ether type bonds (alkyl ether or plasmalogens, indicated by the lowercase 'e' and 'p', respectively) to the glycerol structure. The results indicate that cryopreservation impacts the membrane lipid profile, and that these alterations can be properly monitored by MALDI-MS. Membrane lipids can therefore be evaluated by MALDI-MS to monitor the effect of cryopreservation on membrane lipids, and to investigate changes in lipid profile that may reflect the metabolic response to the cryopreservation stress or changes in the environmental conditions.
Resumo:
Staphylococcus aureus aggravates the allergic eosinophilic inflammation. We hypothesized that Staphylococcus aureus-derived enterotoxins directly affect eosinophil functions. Therefore, this study investigated the effects of Staphylococcal enterotoxins A and B (SEA and SEB) on human and mice eosinophil chemotaxis and adhesion in vitro, focusing on p38 MAPK phosphorylation and intracellular Ca(2+) mobilization. Eosinophil chemotaxis was evaluated using a microchemotaxis chamber, whereas adhesion was performed in VCAM-1 and ICAM-1-coated plates. Measurement of p38 MAPK phosphorylation and intracellular Ca(2+) levels were monitored by flow cytometry and fluorogenic calcium-binding dye, respectively. Prior incubation (30 to 240 min) of human blood eosinophils with SEA (0.5 to 3 ng/ml) significantly reduced eotaxin-, PAF- and RANTES-induced chemotaxis (P<0.05). Likewise, SEB (1 ng/ml, 30 min) significantly reduced eotaxin-induced human eosinophil chemotaxis (P<0.05). The reduction of eotaxin-induced human eosinophil chemotaxis by SEA and SEB was prevented by anti-MHC monoclonal antibody (1 μg/ml). In addition, SEA and SEB nearly suppressed the eotaxin-induced human eosinophil adhesion in ICAM-1- and VCAM-1-coated plates. SEA and SEB prevented the increases of p38 MAPK phosphorylation and Ca(2+) levels in eotaxin-activated human eosinophils. In separate protocols, we evaluated the effects of SEA on chemotaxis and adhesion of eosinophils obtained from mice bone marrow. SEA (10 ng/ml) significantly reduced the eotaxin-induced chemotaxis along with cell adhesion to both ICAM-1 and VCAM-1-coated plates (P<0.05). In conclusion, the inhibition by SEA and SEB of eosinophil functions (chemotaxis and adhesion) are associated with reductions of p38 MAPK phosphorylation and intracellular Ca(2+) mobilization.
Resumo:
A series of novel 1-(substituted phenyl)-3-(2-oxo-1,3,4-oxadiazol-5-yl) β-carbolines (4a-e) and the corresponding Mannich bases 5-9(a-c) were synthesized and evaluated for their in vitro antitumor activity against seven human cancer cell lines. Compounds of 4a-e series showed a broad spectrum of antitumor activity, with GI50 values lower than 15μM for five cell lines. The derivative 4b, having the N,N-dimethylaminophenyl group at C-1, displayed the highest activity with GI50 in the range of 0.67-3.20μM. A high selectivity and potent activity were observed for some Mannich bases, particularly towards resistant ovarian (NCI-ADR/RES) cell lines (5a, 5b, 6a, 6c and 9b), and ovarian (OVCAR-03) cell lines (5b, 6a, 6c, 9a, 9b and 9c). In addition, the interaction of compound 4b with DNA was investigated by using UV and fluorescence spectroscopic analysis. These studies indicated that 4b interact with ctDNA by intercalation binding.
Resumo:
A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]⋅6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The (13)C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the (15)N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.
Resumo:
To characterize liposomal-lidocaine formulations for topical use on oral mucosa and to compare their in vitro permeation and in vivo anesthetic efficacy with commercially available lidocaine formulations. Large unilamellar liposomes (400 nm) containing lidocaine were prepared using phosphatidylcholine, cholesterol, and α-tocoferol (4:3:0.07, w:w:w) and were characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and in vitro release. In vitro permeation across pig palatal mucosa and in vivo topical anesthetic efficacy on the palatal mucosa in healthy volunteers (double-blinded cross-over, placebo controlled study) were performed. The following formulations were tested: liposome-encapsulated 5% lidocaine (Liposome-Lido5); liposome-encapsulated 2.5% lidocaine (Liposome-Lido2.5); 5% lidocaine ointment (Xylocaina®), and eutectic mixture of lidocaine and prilocaine 2.5% (EMLA®). The Liposome-Lido5 and EMLA showed the best in vitro permeation parameters (flux and permeability coefficient) in comparison with Xylocaina and placebo groups, as well as the best in vivo topical anesthetic efficacy. We successfully developed and characterized a liposome encapsulated 5% lidocaine gel. It could be considered an option to other topical anesthetic agents for oral mucosa.
Resumo:
Gellan microgels with potential application in delivery systems were obtained by physically cross-linked gellan gum. The microgels were produced by atomization followed by ionotropic gelation using CaCl2 (gellan/Ca) or KCl (gellan/K) as hardening agent and part of them were coated with chitosan in order to improve their resistance to gastric digestion. Size distribution, morphology and zeta potential of microgels were evaluated before and after in vitro digestion process. The long term stability was also evaluated. Spherical microparticles were obtained at gellan concentration above 0.6% w/w, showing average size among 70-120 μm. Most of the coated and uncoated microgels showed stability in aqueous media, except the uncoated gellan/K microgel. The in vitro digestion evaluation showed that all particles maintained their size and shape after the gastric digestion step. However, the enteric digestion caused disintegration of microgels indicating their potential application for enteric delivery systems. The chitosan-coated microgels showed lower degree of fragmentation when compared to the uncoated microgels, indicating that the coating process enable a better control of microgels releasing properties during the enteric digestion.
Resumo:
In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer.
Resumo:
Abstract Objective. The aim of this study was to evaluate the alteration of human enamel bleached with high concentrations of hydrogen peroxide associated with different activators. Materials and methods. Fifty enamel/dentin blocks (4 × 4 mm) were obtained from human third molars and randomized divided according to the bleaching procedure (n = 10): G1 = 35% hydrogen peroxide (HP - Whiteness HP Maxx); G2 = HP + Halogen lamp (HL); G3 = HP + 7% sodium bicarbonate (SB); G4 = HP + 20% sodium hydroxide (SH); and G5 = 38% hydrogen peroxide (OXB - Opalescence Xtra Boost). The bleaching treatments were performed in three sessions with a 7-day interval between them. The enamel content, before (baseline) and after bleaching, was determined using an FT-Raman spectrometer and was based on the concentration of phosphate, carbonate, and organic matrix. Statistical analysis was performed using two-way ANOVA for repeated measures and Tukey's test. Results. The results showed no significant differences between time of analysis (p = 0.5175) for most treatments and peak areas analyzed; and among bleaching treatments (p = 0.4184). The comparisons during and after bleaching revealed a significant difference in the HP group for the peak areas of carbonate and organic matrix, and for the organic matrix in OXB and HP+SH groups. Tukey's analysis determined that the difference, peak areas, and the interaction among treatment, time and peak was statistically significant (p < 0.05). Conclusion. The association of activators with hydrogen peroxide was effective in the alteration of enamel, mainly with regards to the organic matrix.
Resumo:
Sunlight exposure causes several types of injury to humans, especially on the skin; among the most common harmful effects due to ultraviolet (UV) exposure are erythema, pigmentation and lesions in DNA, which may lead to cancer. These long-term effects are minimized with the use of sunscreens, a class of cosmetic products that contains UV filters as the main component in the formulation; such molecules can absorb, reflect or diffuse UV rays, and can be used alone or as a combination to broaden the protection on different wavelengths. Currently, worldwide regulatory agencies define which ingredients and what quantities must be used in each country, and enforce companies to conduct tests that confirm the Sun Protection Factor (SPF) and the UVA (Ultraviolet A) factor. Standard SPF determination tests are currently conducted in vivo, using human subjects. In an industrial mindset, apart from economic and ethical reasons, the introduction of an in vitro method emerges as an interesting alternative by reducing risks associated to UV exposure on tests, as well as providing assertive analytical results. The present work aims to describe a novel methodology for SPF determination directly from sunscreen formulations using the previously described cosmetomics platform and mass spectrometry as the analytical methods of choice.