950 resultados para hydrocollidial coatings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly charged ions (HCls) carrying high Coulomb potential energy (E-p) could cause great changes in the physical and chemical properties of material surface when they bombard on the solid surface. In our work, the secondary ion yield dependence on highly charged Pbq+ (q = 4-36) bombardment on Al surface has been investigated. Aluminum films (99.99%) covered with a natural oxide film was chosen as our target and the kinetic energy (E-k) was varied between 80 keV and 400 keV. The yield with different incident angles could be described well by the equation developed by us. The equation consists of two parts due to the kinetic sputtering and potential sputtering. The physical interpretations of the coefficients in the said equation are discussed. Also the results on the kinetic sputtering produced by the nuclear energy loss on target Surface are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly charged ions (HCIs) AO(q+)/Pbq+ are extracted from ECR source and impacted on solid surface Of SiO2 Sputtering yield as a function of incident angle is measured by multi-channel plate (MCP). The results have been fitted by a new formula. We proposed the cooperation model to explain the formula. The results demonstrate that the potential assisted kinetic sputtering yield increases with the charge state and potential sputtering (PS) could be induced by impact of HCIs. At larger incident angles, the sputtering yield is dominated by elastic collision between HCIs and material atoms. It is found that, smaller the incident angle, larger the contribution from the potential sputtering. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Problems with tin and copper antifouling compounds have highlighted the need to develop new environmentally friendly antifouling coatings. Bacteria isolated from living surfaces in the marine environment are a promising source of natural antifouling compounds. Four isolates were used to produce extracts that were formulated into ten waterbased paints. All but one of the paints showed activity against a test panel of fouling bacteria. Five of the paints were further tested for their ability to inhibit the settlement of barnacle larvae, Balanus amphitrite, and algal spores of Ulva lactuca, and for their ability to inhibit the growth of U. lactuca. Two paints caused a significant decrease in the number of settled barnacles. One paint containing extract of Pseudomonas sp. strain NUDMB50-11, showed excellent activity in all assays. The antifouling chemicals responsible for the activity of the extract were isolated, using bioassay guided fractionation, and their chemical structures determined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we illustrate a simple chelation-based strategy to trigger DNA release from DNA-incorporated multilayer films, which were fabricated through the layer-by-layer (LbL) assembly of DNA and inorganic zirconium (IV) ion (Zr4+). After being incubated in several kinds of chelator solutions, the DNA multilayer films disassembled and released the incorporated DNA. This was most probably due to the cleavage of coordination/electrostatic interactions between Zr4+ and phosphate groups of DNA. Surface plasmon resonance (SPR), UV-vis spectrometry and atomic force microscopy (AFM) were used to characterize the assembly and the disassembly of the films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) can be effectively improved at the PSS-BMIMPF6 modified GC.