983 resultados para friction and wear properties
Resumo:
We report on a VSAL structure fabricated by a 650 nm edge emitting laser diode with an Au-coated facet and an aperture size of 250 x 500 nm. The far field output power can maintain at 1 mW and the power density is 7.5 mW/mu m(2). Some properties of the VSAL including the threshold current change, the red-shift of the spectral position, and the strong relative-intensity-noise are presented. The physical mechanisms responsible for these phenomena are also discussed, which may contribute to the understanding and application of the potential device for near-field optics.
Resumo:
ZnS:Mn nanoparticles of the cubic zinc blende structure with the average sizes of about 3 nm were synthesized using a coprecipitation method and their optical and magnetic properties were investigated. Two emission bands were observed in doped nanoparitcles and attributed to the defect-related emission of ZnS and the Mn2+ emission, respectively. With the increase of Mn2+ concentration, the luminescence intensities of these two emission bands increased and the ZnS emission band shifted to lower energy. Based on the luminescence excitation spectra of Mn2+, the 3d(5) level structure of Mn2+ in ZnS nanoparticles is similar to that in bulk ZnS:Mn, regardless of Mn2+ concentration. Magnetic measurements showed that all the samples exhibit paramagnetic behavior and no antiferromagnetic interaction between Mn2+ ions exists, which are in contrast to bulk ZnS:Mn. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) from a mixture of SiH4 diluted in H, The effect of hydrogen dilution ratios R-H = [H-2]/[SiH4] on microstructure of the films was investigated. Photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that more the crystalline volume fraction in the silicon films, the higher mobility life-time product (mu tau), better the stability and lower the photosensitivity. Those diphasic films contained 8%-31% crystalline volume fraction can gain both the fine photoelectronic properties and high stability. in the diphasic (contained 12% crystalline volume fraction) solar cell, we obtained a much lower light-induced degradation of similar to 2.9%, with a high initial efficiency of 10.01% and a stabilized efficiency of 9.72% (AM1.5, 100 mW/cm(2)). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We explored the deposition of hydrogenated amorphous silicon (a-Si: H) using trisilane (Si3H8) as a gas precursor in a radiofrequency plasma enhanced chemical vapour deposition process and studied the suitability of this material for photovoltaic applications. The impact of hydrogen dilution on the deposition rate and microstructure of the films is systematically examined. Materials deposited using trisilane are compared with that using disilane (Si2H6). It is found that when using Si3H8 as the gas precursor the deposition rate increases by a factor of similar to 1.5 for the same hydrogen dilution (R = [H-2]/[Si3H8] or [H-2]/[Si2H6])- Moreover, the structural transition from amorphous to nanocrystalline occurs at a higher hydrogen dilution level for Si3H8 and the transition is more gradual as compared with Si2H6 deposited films. Single-junction n-i-p a-Si: H solar cells were prepared with intrinsic layers deposited using Si3H8 or Si2H6. The dependence of open circuit voltage (V-oc) on hydrogen dilution was investigated. V-oc greater than 1 V can be obtained when the i-layers are deposited at a hydrogen dilution of 180 and 100 using Si3H8 and Si2H6, respectively.
Resumo:
InGaN/GaN quantum dots were grown on the sapphire (0 0 0 1) substrate in a metalorganic chemical vapor deposition system. The morphologies of QDs deposited on different modified underlayer (GaN) surfaces, including naturally as grown, Ga-mediated, In-mediated, and air-passivated ones, were investigated by atomic force microscopy (AFM). Photo luminescence (PL) method is used to evaluate optical properties. It is shown that InGaN QDs can form directly on the natural GaN layer. However, both the size and distribution show obvious inhomogeneities. Such a heavy fluctuation in size leads to double peaks for QDs with short growth time, and broad peaks for QDs with long growth time in their low-temperature PL spectra. QDs grown on the Ga-mediated GaN underlayer tends to coalesce. Distinct transform takes place from 3D to 2D growth on the In-mediated ones, and thus the formation of QDs is prohibited. Those results clarify Ga and In's surfactant behavior. When the GaN underlayer is passivated in the air, and together with an additional low-temperature-grown seeding layer, however, the island growth mode is enhanced. Subsequently, grown InGaN QDs are characterized by a relatively high density and an improved Gaussian-like distribution in size. Short surface diffusion length at low growth temperature accounts for that result. It is concluded that reduced temperature favors QD's 3D growth and surface passivation can provide another promising way to obtain high-density QDs that especially suits MOCVD system. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Effects of rapid thermal annealing on the optical and structural properties of self-assembled InAs/GaAs quantum dots capped by the InAlAs/InGaAs combination layers are studied by photoluminescence and transmission electron microscopy. The photoluminescence measurement shows that the photoluminescence peak of the sample after 850 degrees C rapid thermal annealing is blue shifted with 370meV and the excitation peak intensity increases by a factor of about 2.7 after the rapid thermal annealing, which indicates that the InAs quantum dots have experienced an abnormal transformation during the annealing. The transmission electron microscopy shows that the quantum dots disappear and a new InAlGaAs single quantum well structure forms after the rapid thermal annealing treatment. The transformation mechanism is discussed. These abnormal optical properties are attributed to the structural transformation of these quantum dots into a single quantum well.
Resumo:
ZnO thin films were prepared on Si (1 11) substrates at various temperatures from 250 to 700 degrees C using pulsed laser deposition (PLD) technique in order to investigate the structural and optical properties of the films. The structural and morphological properties of the films were investigated by XRD and SEM measurements, respectively. The quality of the films was improved with the increase of the temperature. By XRD patterns the FWHMs of the (0 0 2) peaks of the ZnO films became narrower when the temperatures were above 500 degrees C. The FWHMs of the peaks of (0 0 2) of the films were as narrow as about 0. 19 degrees when films were grown at 650 and 700 degrees C. This indicates the superior crystallinity of the films. The optical properties of the films were studied by photoluminescence spectra using a 325 nm He-Cd laser. The two strongest UV peaks were found at 377.9 nm from ZnO films grown at 650 and 700 degrees C. This result is consistent with that of the XRD investigation. Broad bands in visible region from 450 to 550 nm were also observed. Our works suggest that UV emissions have close relations with not only the crystallinity but also the stoichiometry of the ZnO films. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We have demonstrated 1.5 mum light emission from InAs quantum dots (QDs) capped with a thin GaAs layer. The extension of the emission wavelength can be assigned to the large QD height. We also investigate the effect of growth interruption on the PL properties and the shape of InAs QDs fabricated by migration-enhanced growth (MEG). Contrary to expectation, we observed a remarkable blueshift of the emission energy with the growth interruption in MEG mode. Detailed investigations reveal that the blueshift is related to the reduced island height with the growth interruption, which is confirmed by reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) measurement results. Accordingly, the structure changes of the islands are interpreted in terms of thermodynamic and kinetic theories. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The structure and magnetic properties of the RCo5Ga7 (R = Y, Tb, Dy, Ho and Er) compounds with the ScFe6Ga6-type structure have been studied. The stability of RCo5Ga7 is closely related with the ratio of the metal radii R-RE/R-(Co,R-Ga). With R-RE/R-(Co,R-Ga) less than or equal to 1.36, the compounds can be stabilized in the ScFe6Ga6-type structure. The lattice of RCo5Ga7 shrinks as the atomic order of R increases, and it is consistent with the lanthanide contraction. The structure analysis based on X-ray diffraction patterns reveals that in the orthorhombic RCo5Ga7 (Immm), R occupies the 2a site, and Co enters into the 8k and the 4h sites, and Ga is at the 4e, 4f, 4g, 4h and 8k sites. The interatomic distances and the coordination numbers of RCo5Ga7 are provided from the refinement results. The short interatomic distance (less than 2.480 Angstrom) between the Co ions results in the negative magnetic interaction, which does not favor ferromagnetic ordering. The magnetic moment of YCo5Ga7 is absent, and RCo5Ga7 (R = Tb, Dy, Ho and Er) may have long-range magnetic ordering with the paramagnetic Curie temperature lower than 5 K. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The influence of InAs deposition thickness on the structural and optical properties of InAs/InAlAs quantum wires (QWR) superlattices (SLS) was studied. The transmission electron microscopy (TEM) results show that with increasing the InAs deposited thickness, the size uniformity and spatial ordering of InAs QWR SLS was greatly improved, but threading dislocations initiated from InAs nanowires for the sample with 6 monolayers (MLs) InAs deposition. In addition, the zig-zag features along the extending direction and lateral interlink of InAs nanowires were also observed. The InAs nanowires, especially for the first period, were laterally compact. These structural features may result in easy tunneling and coupling of charge carriers between InAs nanowires and will hamper their device applications to some extent. Some suggestions are put forward for further improving the uniformity of the stacked InAs QWRs, and for suppressing the formation of the threading dislocations in InAs QWR SLS.
Resumo:
Mn ions were doped into InAs/GaAs quantum dots samples by high energy. implantation and subsequent annealing. The optical and electric properties of the samples have been studied. The photoluminescence intensity of the samples annealed rapidly is stronger than that of the samples annealed for long time. By studying the relationship between the photoluminescence peaks and the implantation dose, it can be found that the photoluminescence peaks of the quantum dots show a blueshift firstly and then move to low energy with the implantation. dose increasing. The latter change in the photoluminescence peaks is probably attributed to that Mn ions entering the InAs quantum dots, which release the strain of the quantum dots. For the samples implanted by heavy dose (annealed rapidly) and the samples annealed for long time, the resistances versus temperature curves reveal anomalous peaks around 40 K.
Resumo:
C-axis-orientated ZnO thin films were prepared on glass substrates by pulsed-laser deposition (PLD) technique in an oxygen-reactive atmosphere, using a metallic Zn target. The effects of growth condition such as laser energy and substrate temperature on the structural and optical properties of ZnO films had been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra and room-temperature (RT) photoluminescence (PL) measurements. The results showed that the thickness, crystallite size, and compactness of ZnO films increased with the laser energy and substrate temperature. Both the absorption edges and the UV emission peaks of the films exhibited redshift, and UV emission intensity gradually increased as the laser energy and substrate temperature increased. From these results, it was concluded that crystalline quality of ZnO films was improved with increasing laser energy and substrate temperature. (c) 2007 Elsevier B.N. All rights reserved.
Resumo:
A 275 mu m thick GaN layer was directly grown on the SiO2-prepatterned sapphire in a home-built vertical hydride vapour phase epitaxy (HVPE) reactor. The variation of optical and structure characteristics were microscopically identified using spatially resolved cathodeluminescence and micro-Raman spectroscopy in a cross section of the thick film. The D X-0(A) line with the FWHM of 5.1 meV and etch- pit density of 9 x 10(6) cm(-2) illustrated high crystalline quality of the thick GaN epitaxial layer. Optically active regions appeared above the SiO2 masks and disappeared abruptly due to the tapered inversion domains at 210 - 230 mu m thickness. The crystalline quality was improved by increasing the thickness of the GaN/sapphire interface, but the region with a distance of 2 mu m from the top surface revealed relatively low quality due to degenerate surface reconstruction by residual gas reaction. The x-ray rocking curve for the symmetric (0 0 2) and asymmetric (1 0 2) reflections also showed good quality and a small wing tilt of the epitaxial lateral overgrowth (ELO) GaN.
Resumo:
A series of (Ga, Mn)As epilayers have been prepared on semi-insulating GaAs (001) substrates at 230 degrees C by molecular-beam epitaxy under fixed temperatures of Ga and Mn cells and varied temperatures of the As cell. By systematically studying the lattice constants, magnetic and magneto-transport properties in a self-consistent manner, we find that the concentration of As antisites monotonically increases with increasing As flux, while the concentration of interstitial Mn defects decreases with it. Such a trend sensitively affects the properties of (Ga, Mn)As epilayers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
For both, (Al,Ga)N with low Al content grown on a GaN nucleation layer and (AI,Ga)N with high Al content gown on an AlN nucleation layer, the inhomogeneous distribution of the luminescence is linked to the distribution of defects, which may be due to inversion domains. In the former system, defect regions exhibit a much lower Al content than the nominal one leading to a splitting of the respective luminescence spectra. In the latter system, a domain-like growth is observed with a pyramidal surface morphology and non-radiative recombination within the domain boundaries. (c) 2007 WILEYNCH Verlag GmbH & Co. KGaA, Weinheim.