997 resultados para electromagnetic scattering


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of stability of black hole was first studied by Regge and Wheeler who investigated linear perturbations of the exterior Schwarzschild spacetime. Further work on this problem led to the study of quasi-normal modes which is believed as a characteristic sound of black holes. Quasi-normal modes (QNMs) describe the damped oscillations under perturbations in the surrounding geometry of a black hole with frequencies and damping times of oscillations entirely fixed by the black hole parameters.In the present work we study the influence of cosmic string on the QNMs of various black hole background spacetimes which are perturbed by a massless Dirac field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report enhanced back scattering in nanometer-sized ZnO colloids prepared in two different media, by different methods. The FWHM of the back scattered cone and hence the mean free path varied with concentration of ZnO as well as particle size. The Lorentzian profile of backscattered cone indicates the presence of coherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple experimental set-up is described to measure the electromagnetic shielding property of high Tc superconducting samples. Measurements were performed using HTSC materials in the form of laser ablated thin films, powders and sintered pellets. Samples used were Gd-123 in pure and doped form as well as a few Bi-based superconducting ceramics. For comparison, similar measurements were carried out on metals like aluminium, copper and μ metal. Very effective shielding was observed for HTSC materials compared to the conventional materials mentioned above. However it also depended on the sample types and poor shielding was observed for powdered HTSC material in comparison to thin films prepared by laser ablation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scattering behaviour of fractal based metallodielectric structures loaded over metallic targets of different shapes such as flat plate, cylinder and dihedral corner reflector are investigated for both TE and TM polarizations of the incident wave. Out of the various fractal structures studied,square Sierpinski carpet structure is found to give backscattering reduction for an appreciable range of frequencies. The frequency of minimum backscattering depends on the geometry of the structure as well as on the thickness of the substrate. This structure when loaded over a dihedral corner reflector is showing an enhancement in RCS for corner angles other than 90◦.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite its recognized value in detecting and characterizing breast disease, X-ray mammography has important limitations that motivate the quest for alternatives to augment the diagnostic tools that are currently available to the radiologist. The rationale for pursuing electromagnetic methods are based on the significant dielectric contrast between normal and cancerous breast tissues, when exposed to microwaves. The present study analyzes two-dimensional microwave tomographic imaging on normal and malignant breast tissue samples extracted by mastectomy, to assess the suitability of the technique for early detection ofbreast cancer. The tissue samples are immersed in matching coupling medium and are illuminated by 3 GHz signal. 2-D tomographic images ofthe breast tissue samples are reconstructed from the collected scattered data using distorted Born iterative method. Variations of dielectric permittivity in breast samples are distinguishable from the obtained permittivity profiles, which is a clear indication of the presence of malignancy. Hence microwave tomographic imaging is proposed as an alternate imaging modality for early detection ofbreast cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dept.of Instrumentation,Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New mathematical methods to analytically investigate linear acoustic radiation and scattering from cylindrical bodies and transducer arrays are presented. Three problems of interest involving cylinders in an infinite fluid are studied. In all the three problems, the Helmholtz equation is used to model propagation through the fluid and the beam patterns of arrays of transducers are studied. In the first problem, a method is presented to determine the omni-directional and directional far-field pressures radiated by a cylindrical transducer array in an infinite rigid cylindrical baffle. The solution to the Helmholtz equation and the displacement continuity condition at the interface between the array and the surrounding water are used to determine the pressure. The displacement of the surface of each transducer is in the direction of the normal to the array and is assumed to be uniform. Expressions are derived for the pressure radiated by a sector of the array vibrating in-phase, the entire array vibrating in-phase, and a sector of the array phase-shaded to simulate radiation from a rectangular piston. It is shown that the uniform displacement required for generating a source level of 220 dB ref. μPa @ 1m that is omni directional in the azimuthal plane is in the order of 1 micron for typical arrays. Numerical results are presented to show that there is only a small difference between the on-axis pressures radiated by phased cylindrical arrays and planar arrays. The problem is of interest because cylindrical arrays of projectors are often used to search for underwater objects. In the second problem, the errors, when using data-independent, classical, energy and split beam correlation methods, in finding the direction of arrival (DOA) of a plane acoustic wave, caused by the presence of a solid circular elastic cylindrical stiffener near a linear array of hydrophones, are investigated. Scattering from the effectively infinite cylinder is modeled using the exact axisymmetric equations of motion and the total pressures at the hydrophone locations are computed. The effect of the radius of the cylinder, a, the distance between the cylinder and the array, b, the number of hydrophones in the array, 2H, and the angle of incidence of the wave, α, on the error in finding the DOA are illustrated using numerical results. For an array that is about 30 times the wavelength and for small angles of incidence (α<10), the error in finding the DOA using the energy method is less than that using the split beam correlation method with beam steered to α; and in some cases, the error increases when b increases; and the errors in finding the DOA using the energy method and the split beam correlation method with beam steered to α vary approximately as a7 / 4 . The problem is of interest because elastic stiffeners – in nearly acoustically transparent sonar domes that are used to protect arrays of transducers – scatter waves that are incident on it and cause an error in the estimated direction of arrival of the wave. In the third problem, a high-frequency ray-acoustics method is presented and used to determine the interior pressure field when a plane wave is normally incident on a fluid cylinder embedded in another infinite fluid. The pressure field is determined by using geometrical and physical acoustics. The interior pressure is expressed as the sum of the pressures due to all rays that pass through a point. Numerical results are presented for ka = 20 to 100 where k is the acoustic wavenumber of the exterior fluid and a is the radius of the cylinder. The results are in good agreement with those obtained using field theory. The directional responses, to the plane wave, of sectors of a circular array of uniformly distributed hydrophones in the embedded cylinder are then computed. The sectors are used to simulate linear arrays with uniformly distributed normals by using delays. The directional responses are compared with the output from an array in an infinite homogenous fluid. These outputs are of interest as they are used to determine the direction of arrival of the plane wave. Numerical results are presented for a circular array with 32 hydrophones and 12 hydrophones in each sector. The problem is of interest because arrays of hydrophones are housed inside sonar domes and acoustic plane waves from distant sources are scattered by the dome filled with fresh water and cause deterioration in the performance of the array.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present thesis, possibility of beam shaping of sectoral horns and corner reflector systems'has been studied in detail. The experimental results obtained in the above two cases are compared. As far as the flanged sectoral horns are concerned, the special advantage is that the gain is increased without impairing impedance conditions. An intense study on corner reflector antennas shows that the been broadening or focussing will be possible by adjusting parameters involved. Beam tilting by imposing asymmetries is another interesting property of the systems. A comprehensive study of these fields has been presented in Chapter II. Chapter III is exclusively for describing the experimental techniques used in the present investigation. In Chapter IV, experimental results on flanged sectoral horns and corner reflector eyetses are presented. A comparative analysis of the experimental results obtained with flanged sectoral horns and corner reflector systems is presented in the Chapter V. The similarity and close resemblance in each aspects are shown by presenting typical results from these two eysteee. Theoretical aspects of both types of antennas are considered in Chapter VI. Attempts are made for co-ordinating the theoretical aspects and drawing a final conclusion. In Chapter VII. the final conclusion that the flanged sectoral horn may be considered as a corner reflector system has been drawn. The importance of the conclusions and usefulness are pointed out. The scope for further work in these lines has been indicated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for improved feed systems for large reflector antennas employed in Radio Astronomy and Satellite tracking spurred the interest in horn antenna research in the 1960's. The major requirements were to reduce spill over, cross-polarisation losses,and to enhance the aperture efficiency to the order of about 75-8O%L The search for such a feed culminated in the corrugated horn. The corrugat1e 1 horn triggered widespread interest and enthusiasm, and a large amount of work(32’34’49’5O’52’53’58’65’75’79)has already been done on this type of antennas. The properties of corrugated surfaces has been investigated in detail. It was strongly felt that the flange technique and the use of corrugated surfaces could be merged together to obtain the advantages of both. This is the idea behind the present work. Corrugations are made on the surface of flange elements. The effect of various corrugation parameters are studied. By varying the flange parameters, a good amount of data is collected and analysed to ascertain the effects of corrugated flanges. The measurements are repeated at various frequencies, in the X— and S-bands. The following parameters of the system were studied: (a) beam shaping (b) gain (c) variation of V.S.U.R. (d) possibility of obtaining circularly polarised radiation from the flanged horn. A theoretical explanation to the effects of corrugated flanges is attempted on the basis of the line-source theory. Even though this theory utilises a simplified model for the calculation of radiation patterns, fairly good agreement between the computed pattern and experimental results are observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The- classic: experiment of Heinrich Hertz verified the theoretical predict him of Maxwell that kxnfli radio and light waves are physical phenomena governed by the same physical laws. This has started a.rnnJ era of interest in interaction of electromagnetic energy with matter. The scattering of electromagnetic waves from a target is cleverly utilized im1 RADAR. This electronic system used tx> detect and locate objects under unfavourable conditions or obscuration that would render the unaided eye useless. It also provides a means for measuring precisely the range, or distance of an object and the speed of a moving object. when an obstacle is illuminated by electromagnetic waves, energy is dispersed in all directions. The dispersed energy depends on the size, shape and composition of the obstacle and frequency and nature of the incident wave. This distribution of energy’ is known as ‘scattering’ and the obstacle as ‘scatterer’ or 'target'.