953 resultados para eating behavior
Resumo:
Nitrogen-related defects in diluted Ga(As,N) have been detected by Raman scattering in resonance with the localized E+ transition. These defects are attributed to local vibrational modes of nitrogen dimers on Ga- and As-lattice sites. Rapid thermal annealing under appropriate conditions is found to be able to remove the nitrogen dimers. The required minimum annealing temperature coincides with the threshold-like onset of strong, near-band-gap photoluminescence. This finding suggests that the nitrogen dimers are connected with nonradiative recombination centers. (C) 2004 American Institute of Physics.
Resumo:
The photoluminescence of a GaAsN alloy with 0.1% nitrogen has been studied under pressures up to 8.5 GPa at 33, 70, and 130 K. At ambient pressure, emissions from both the GaAsN alloy conduction band edge and discrete nitrogen-related bound states are observed. Under applied pressure, these two types of emissions shift with rather different pressure coefficients: about 40 meV/GPa for the nitrogen-related features, and about 80 meV/GPa for the alloy band-edge emission. Beyond 1 GPa, these discrete nitrogen-related peaks broaden and evolve into a broad band. Three new photoluminescence bands emerge on the high-energy side of the broad band, when the pressure is above 2.5, 4.5, and 5.25 GPa, respectively, at 33 K. In view of their relative energy positions and pressure behavior, we have attributed these new emissions to the nitrogen-pair states NN3 and NN4, and the isolated nitrogen state N-x. In addition, we have attributed the high-energy component of the broad band formed above 1 GPa to resonant or near-resonant NN1 and NN2, and its main body to deeper cluster centers involving more than two nitrogen atoms. This study reveals the persistence of all the paired and isolated nitrogen-related impurity states, previously observed only in the dilute doping limit, into a rather high doping level. Additionally, we find that the responses of different N-related states to varying N-doping levels differ significantly and in a nontrivial manner.
Resumo:
In this paper, we have calculated and discussed in detail the nonlinear effect induced by three carrier effects: free-carrier absorption, bandgap filling, and bandgap shrinkage. The central wavelength of response of resonant-cavity-enhanced (RCE) photodetectors shifts according to the change of the refractive index, and the response of a given optical wavelength simultaneously changes.With an increasing As composition of ln(1-x)Ga(x)As(y)P(1-y) and the spacer thickness, the nonlinear effect increases, but the -1-dB input saturation optical power and the -1-dB saturation photocurrent decrease. Bistable-state operation occurs when the input optical power is in the proper bistable region.
Resumo:
We studied, for the first time, the strong coupling between exciton and cavity mode within semiconductor microcavity under hydrostatic pressure, and measured the Rabi splitting. The strong coupling between exciton and cavity mode, and so Rabi splitting appear clearly as the applied pressure reaches 0.37-0.41 GPa. The experiment result shows that hydrostatic pressure not only can tune the coupling between exciton and cavity mode effectively, but also can keep exciton property almost unchanged during the whole tuning procedure in contrast to other tuning method (temperature field et al). Our result agrees with the related theory very well. The Rabi splitting, extracted from fitting the measured mode-energy vs pressure curves with correspanding theoretical model, is equal to 6 meV.
Resumo:
The photoluminescence from ZnS1-xTex alloy with 0 < x < 0.3 was investigated under hydrostatic pressure up to 7 GPa. Two peaks were observed in the alloys with x < 0.01, which are related to excitons bound to isolated Te isoelectronic impurities (Te-1 centers) and Te pairs (Te-2 centers), respectively. Only the Te-2 related emissions were observed in the alloys with 0.01 < x < 0.03. The emissions in the alloys with 0.03 < x < 0.3 are attributed to the excitons bound to the Te-n (n greater than or equal to 3) cluster centers. The pressure coefficient of the Te-1 related peak is 89(4) meV/GPa, about 40% larger than that of the band gap of ZnS. On the other hand, the pressure coefficient of the Te-2 related emissions is only 52(4) meV/GPa, about 15% smaller than that of the ZnS band gap. A simple Koster-Slater model has been used to explain the different pressure behavior of the Te-1 and Te-2 centers. The pressure coefficient of the Te-3 centers is 62(2) meV/GPa. Then the pressure coefficients of the Te-n centers decrease rapidly with further increasing Te composition.
Resumo:
ZnS:Te epilayers with Te concentration from 0.5% to 3.1% were studied by photoluminescence under hydrostatic pressure at 15 K. Two emission bands related to the isolated Te-1 and Te-2 pair isoelectronic centers were observed in the samples with Te concentrations of 0.5% and 0.65%. For the samples with Te concentrations of 1.4% and 3.1%, only the Te-2-related peak was observed. The pressure coefficients of all the Te-1-related bands were found to be unexpectedly much larger than that of the ZnS band gap. The pressure coefficients for all the Te-2-related bands are, however, rather smaller than that of ZnS band gap as usually observed. Analysis based on a Koster-Slater model indicates that an increase of the valence bandwidth with pressure is the main reason for the faster pressure shift of the Te-1 centers, and the huge difference in the pressure behavior of the Te-1 and Te-2 centers is due mainly to the difference in the pressure-induced enhancement of the impurity potential on the Te-1 and Te-2 centers. (C) 2002 American Institute of Physics.
Resumo:
Micrometer-sized spherical glass microspheres were fabricated. CdSeS semiconductor nanometer clusters were incorporated into spherical microcavities. When a single microsphere was excited by a laser beam, the whispering gallery mode resonance of the photoluminescence of CdSeS quantum dots in the spherical microcavities was realized by the multiple total internal reflections at the spherical interface. The coupling of restricted electronic and photonic states was realized.
Resumo:
Hydrogen behavior in unintentionally doped GaN epilayers on sapphire substrates grown by NH3-MBE is investigated. Firstly, we find by using nuclear reaction analysis (NRA) that with increasing hydrogen concentration the background electron concentration increases, which suggests that there exists a hydrogen-related donor in undoped GaN, Secondly, Fourier transform infrared (FTIR) absorption and X-ray photoelectron spectroscopy (XPS) reveal Further that hydrogen atom is bound to nitrogen atom in GaN with a local vibrational mode at about 3211 cm(-1) Hence, it is presumed that the hydrogen-related complex Ga. . .H-N is a hydrogen-related donor candidate partly responsible for high n-type background commonly observed in GaN films. Finally, Raman spectroscopy results of the epilayers show that ill addition to the expected compressive biaxial strain, in some cases GaN films suffer from serious tensile biaxial strain. This anomalous behavior has been well interpreted in terms of interstitial hydrogen lattice dilation. (C) 2001 Elsevier Science B.V. All rights reserved.