989 resultados para cardiac growth
Resumo:
Background. Hyperlipidemia is a common concern in patients with heterozygous familial hypercholesterolemia (HeFH) and in cardiac transplant recipients. In both groups, an elevated serum LDL cholesterol level accelerates the development of atherosclerotic vascular disease and increases the rates of cardiovascular morbidity and mortality. The purpose of this study is to assess the pharmacokinetics, efficacy, and safety of cholesterol-lowering pravastatin in children with HeFH and in pediatric cardiac transplant recipients receiving immunosuppressive medication. Patients and Methods. The pharmacokinetics of pravastatin was studied in 20 HeFH children and in 19 pediatric cardiac transplant recipients receiving triple immunosuppression. The patients ingested a single 10-mg dose of pravastatin, and plasma pravastatin concentrations were measured up to 10/24 hours. The efficacy and safety of pravastatin (maximum dose 10 to 60 mg/day and 10 mg/day) up to one to two years were studied in 30 patients with HeFH and in 19 cardiac transplant recipients, respectively. In a subgroup of 16 HeFH children, serum non-cholesterol sterol ratios (102 x mmol/mol of cholesterol), surrogate estimates of cholesterol absorption (cholestanol, campesterol, sitosterol), and synthesis (desmosterol and lathosterol) were studied at study baseline (on plant stanol esters) and during combination with pravastatin and plant stanol esters. In the transplant recipients, the lipoprotein levels and their mass compositions were analyzed before and after one year of pravastatin use, and then compared to values measured from 21 healthy pediatric controls. The transplant recipients were grouped into patients with transplant coronary artery disease (TxCAD) and patients without TxCAD, based on annual angiography evaluations before pravastatin. Results. In the cardiac transplant recipients, the mean area under the plasma concentration-time curve of pravastatin [AUC(0-10)], 264.1 * 192.4 ng.h/mL, was nearly ten-fold higher than in the HeFH children (26.6 * 17.0 ng.h/mL). By 2, 4, 6, 12 and 24 months of treatment, the LDL cholesterol levels in the HeFH children had respectively decreased by 25%, 26%, 29%, 33%, and 32%. In the HeFH group, pravastatin treatment increased the markers of cholesterol absorption and decreased those of synthesis. High ratios of cholestanol to cholesterol were associated with the poor cholesterol-lowering efficacy of pravastatin. In cardiac transplant recipients, pravastatin 10 mg/day lowered the LDL cholesterol by approximately 19%. Compared with the patients without TxCAD, patients with TxCAD had significantly lower HDL cholesterol concentrations and higher apoB-100/apoA-I ratios at baseline (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.031; and 0.7 ± 0.2 vs. 0.5 ± 0.1, P = 0.034) and after one year of pravastatin use (1.0 ± 0.3 mmol/L vs. 1.4 ± 0.3 mmol/L, P = 0.013; and 0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). Compared with healthy controls, the transplant recipients exhibited elevated serum triglycerides at baseline (median 1.3 [range 0.6-3.2] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P=0.0002), which negatively correlated with their HDL cholesterol concentration (r = -0.523, P = 0.022). Recipients also exhibited higher apoB-100/apoA1 ratios (0.6 ± 0.2 vs. 0.4 ± 0.1, P = 0.005). In addition, elevated triglyceride levels were still observed after one year of pravastatin use (1.3 [0.5-3.5] mmol/L vs. 0.7 [0.3-2.4] mmol/L, P = 0.0004). Clinically significant elevations in alanine aminotransferase, creatine kinase, or creatinine ocurred in neither group. Conclusions. Immunosuppressive medication considerably increased the plasma pravastatin concentrations. In both patient groups, pravastatin treatment was moderately effective, safe, and well tolerated. In the HeFH group, high baseline cholesterol absorption seemed to predispose patients to insufficient cholesterol-lowering efficacy of pravastatin. In the cardiac transplant recipients, low HDL cholesterol and a high apoB-100/apoA-I ratio were associated with development of TxCAD. Even though pravastatin in the transplant recipients effectively lowered serum total and LDL cholesterol concentrations, it failed to normalize their elevated triglyceride levels and, in some patients, to prevent the progression of TxCAD.
Resumo:
The intervertebral disc is composed of concentrically arranged components: annulus fibrosus, the transition zone, and central nucleus pulposus. The major disc cell type differs in various parts of the intervertebral disc. In annulus fibrosus a spindle shaped fibroblast-like cell mainly dominates, whereas in central nucleus pulposus the more rounded chondrocyte-like disc cell is the major cell type. At birth the intervertebral disc is well vascularized, but during childhood and adolescence blood vessels become smaller and less numerous. The adult intervertebral disc is avascular and is nourished via the cartilage endplates. On the other hand, degenerated and prolapsed intervertebral discs are again vascularized, and show many changes compared to normal discs, including: nerve ingrowth, change in collagen turnover, and change in water content. Furthermore, the prolapsed intervertebral disc tissue has a tendency to decrease in size over time. Growth factors are polypeptides which regulate cell growth, extracellular matrix protease activity, and vascularization. Oncoproteins c-Fos and c-Jun heterodimerize, forming the AP-1 transcription factor which is expressed in activated cells. In this thesis the differences of growth factor expression in normal intervertebral disc, the degenerated intervertebral disc and herniated intervertebral disc were analyzed. Growth factors of particular interest were basic fibroblast growth factor (bFGF or FGF-2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and transforming growth factor beta (TGFβ). Cell activation was visualized by the expression of the AP-1 transcription promoters c-Fos and c-Jun. The expression was shown with either mono- or polyclonal antibodies by indirect avidin-biotin-peroxidase immunohistochemical staining method. The normal control material was collected from a tissue bank of five organ donors. The degenerated disc material was from twelve patients operated on for painful degenerative disc disease, and herniated disc tissue material was obtained from 115 patients operated on for sciatica. Normal control discs showed only TGFβ immunopositivity. All other factors studied were immunonegative in the control material. Prolapsed disc material was immunopositive for all factors studied, and this positivity was located either in the disc cells or in blood vessels. Furthermore, neovascularization was noted. Disc cell immunoreaction was shown in chondrocyte-like disc cells or in fibroblast-like disc cells, the former being expressed especially in conglomerates (clusters of disc cells). TGFβ receptor induction was prominent in prolapsed intervertebral disc tissue. In degenerated disc material, the expression of growth factors was analyzed in greater detail in various parts of the disc: nucleus pulposus, anterior annulus fibrosus and posterior annulus fibrosus. PDGF did not show any immunoreactivity, whereas all other studied growth factors were localized either in chondrocyte-like disc cells, often forming clusters, in fibroblast-like disc cells, or in small capillaries. Many of the studied degenerated discs showed tears in the posterior region of annulus fibrosus, but expression of immunopositive growth factors was detected throughout the entire disc. Furthermore, there was a difference in immunopositive cell types for different growth factors. The main conclusion of the thesis, supported by all substudies, is the occurrence of growth factors in disc cells. They may be actively participating in a network regulating disc cell growth, proliferation, extracellular matrix turnover, and neovascularization. Chondrocyte-like disc cells, in particular, expressed growth factors and oncoproteins, highlighting the importance of this cell type in the basic pathophysiologic events involved in disc degeneration and disc rearrangement. The thesis proposes a hypothesis for cellular remodelling in intervertebral disc tissue. In summary, the model presents an activation pattern of different growth factors at different intervertebral disc stages, mechanisms leading to neovascularization of the intervertebral disc in pathological conditions, and alteration of disc cell shape, especially in annulus fibrosus. Chondrocyte-like disc cells become more numerous, and these cells are capable of forming clusters, which appear to be regionally active within the disc. The alteration of the phenotype of disc cells expressing growth factors from fibroblast-like disc cells to chondrocyte-like cells in annulus fibrosus, and the numerous expression of growth factor expressing disc cells in nucleus pulposus, may be a key element both during pathological degeneration of the intervertebral disc, and during the healing process after trauma.
Resumo:
Aim and objectives To identify the prevalence that temperature reduced by more than 1°C from pre to post-procedure in a sample of non-anaesthetised patients undergoing procedures in a cardiac catheterisation laboratory. Background Advances in medical technology are minimising the invasiveness of diagnostic tests and treatments for disease, which is correspondingly increasing the number of medical procedures performed without sedation or anaesthesia. Procedural areas in which medical procedures are performed without anaesthesia are typically kept at a cool temperature for staff comfort. As such, there is a need to inform nursing practices in regard to the thermal management of non-anaesthetised patients undergoing procedures in surgical or procedural environments. Design Single-site observational study Methods Patients were included if they had undergone an elective procedure without sedation or anaesthesia in a cardiac catheterisation laboratory. Ambient room temperature was maintained between 18°C and 20°C. Passive warming with heated cotton blankets was applied. Nurses measured body temperature and thermal comfort before and after 342 procedures. Results Mean change in temperature was -0.08°C (Standard deviation 0.43). The reduction in temperature was more than 1°C after 11 procedures (3.2%). One patient whose temperature had reduced more than 1°C after their procedure reported thermal discomfort. A total of 12 patients were observed to be shivering post-procedure (3.6%). No demographic or clinical characteristics were associated with reduction in temperature of more than 1°C from pre to post-procedure. Conclusions Significant reduction in body temperature was rare in our sample of non-anaesthetised patients. Relevance to clinical practice Similar results would likely be found in other procedural contexts during procedures conducted in settings with comparable room temperatures where passive warming can also be applied with limited skin exposure.
Resumo:
Without estrogen action, the fusion of the growth plates is postponed and statural growth continues for an exceptionally long time. Aromatase inhibitors, blockers of estrogen biosynthesis, have therefore emerged as a new potential option for the treatment of children with short stature. We investigated the efficacy of the aromatase inhibitor letrozole in the treatment of boys with idiopathic short stature (ISS) using a randomised, placebo-controlled, double-blind research setting. A total of 30 boys completed the two-year treatment. By decreasing estrogen-mediated central negative feedback, letrozole increased gonadotrophin and testosterone secretion in pubertal boys, whereas the pubertal increase in IGF-I was inhibited. Treatment with letrozole effectively delayed bone maturation and increased predicted adult height by 5.9 cm (P0.001), while placebo had no effect on either parameter. The effect of letrozole treatment on near-final height was studied in another population, in boys with constitutional delay of puberty, who received letrozole (n=9) or placebo (n=8) for one year, in combination with low-dose testosterone for six months during adolescence. The mean near-final height of boys randomised to receive testosterone and letrozole was significantly greater than that of boys who received testosterone and placebo (175.8 vs. 169.1 cm, P=0.04). As regards safety, treatment effects on bone health, lipid metabolism, insulin sensitivity, and body composition were monitored in boys with ISS. During treatment, no differences in bone mass accrual were evident between the treatment groups, as evaluated by dual-energy x-ray absorptiometry measurements of the lumbar spine and femoral neck. Bone turnover and cortical bone growth, however, were affected by letrozole treatment. As indicated by differences in markers of bone resorption (U-INTP) and formation (S-PINP and S-ALP), the long-term rate of bone turnover was lower in letrozole-treated boys, despite their more rapid advancement in puberty. Letrozole stimulated cortical bone growth in those who progressed in puberty: the metacarpal index (MCI), a measure of cortical bone thickness, increased more in letrozole-treated pubertal boys than in placebo-treated pubertal boys (25% vs. 9%, P=0.007). The change in MCI correlated positively with the mean testosterone-to-estradiol ratio. In post-treatment radiographic evaluation of the spine, a high rate of vertebral deformities - mild anterior wedging and mild compression deformities - were found in both placebo and letrozole groups. In pubertal boys with ISS treated with letrozole, stimulated testosterone secretion was associated with a decrease in the percentage of fat mass and in HDL-cholesterol, while LDL-cholesterol and triglycerides remained unchanged. Insulin sensitivity, as evaluated by HOMA-IR, was not significantly affected by the treatment. In summary, treatment with the aromatase inhibitor letrozole effectively delayed bone maturation and increased predicted adult height in boys with ISS. Long-term follow-up data of boys with constitutional delay of puberty, treated with letrozole for one year during adolescence, suggest that the achieved gain in predicted adult height also results in increased adult height. However, until the safety of aromatase inhibitor treatment in children and adolescents is confirmed, such treatment should be considered experimental.
Resumo:
In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.
Resumo:
Background: Congenital heart defects include a wide range of inborn malformations. Depending on the defect, the life expectancy of a newborn with cardiac anomaly varies from a few days to a normal life span. In most instances surgery, is the only treatment available. The late results of surgery have not been comprehensively investigated. Aims: Mortality, morbidity and the life situation of all Finnish patients who had been operated on for congenital heart defect during childhood were investigated. Methods: Patient and surgical data were gathered from all hospitals that had performed heart surgeries on children. Late mortality and survival data were obtained from the population registry, and the causes of deaths from Statistics Finland. Morbidity of patients operated on during 1953-1989 was assessed by the usage of medicines. The pharmacotherapy data of patients and controls were obtained from the Social Insurance Institute. The life situation of patients was surveyed by mailed questionnaire. Survival, causes of deaths and life situation of patients were compared with those of the general population. Results: A total of 7240 cardiac operations were performed on 6461 children during the first 37 years of cardiac surgery (1953-1989). The number of procedures constantly rose during this period, and the increase continued in later years. The patient material varied over time, as more defects became surgically treatable. During 1953-1989 the operative mortality (death within 30 days of surgery) was 6.9%. In the 1990s a slight rise occurred in early mortality, as increasingly complicated patients were surgically treated. During 2000-2003 practically no defects were beyond the operative range. Thus, the operative mortality of 4.4% was excellent, decreasing even further to 2.0% in 2004-2007. The overall 45-year survival of patients operated on in 1953-1989 was 78%, and the corresponding figure for the general population was 93%. Survival depended on the defect, being worst among patients with univentricular heart. Late survival was also better during the 1990s and at the beginning of the 21st century. Of the 6028 early survivors, 592 died late (>30 days) after surgery. A total of 397 deaths (67%) were related and 185 (31%) unrelated to congenital heart defect. The cause of death was unknown in 10 cases. Of those 5774 patients who survived their first operation and had complete follow-up, 16% were operated on several times. Seventeen percent of patients used medicines for cardiac symptoms (heart failure, arrhythmia, hypertension and coronary disease). Patients risk of using cardiac medicines was 2.16 (Cl 1.97-2.37) times higher than that of controls. Patients also had more genetic syndromes and mental retardation and more often used medicines for asthma and epilepsy. Adult patients who had been operated on as children had coped surprisingly well with their defects. Their level of education was similar and their employment level even higher than expected, and they were living in a steady relationship as often as the general population. Conclusions: Cardiac surgery developed rapidly, and nowadays practically all defects can be treated. The overall survival of all operated patients was 78%, 16% less than that of the general population. However, it was significantly better than the anticipated natural survival. However, many patients had health problems; 16% needed reoperations and 17% cardiac medicines to maintain their condition. Most of the patients assessed their general health as good and lived a normal life.
Resumo:
The drive to replace lead (Pb) from electronics has led to the replacement of tin (Sn) alloys as the terminal plating for electronic devices. However, the deposition of Sn based alloys as the component surface finish tends to induce Sn whisker that causes unintended electric shorts when the conductive whiskers grow across to the adjacent conductor. Internal stress is considered as the driving force that causes the growth of Sn whiskers. In this study, stress type of elevated temperature/ humidity exposure at 55C/85%RH with the storage for up to 24 months was conducted to define the acceleration factor in samples with deposition of immersion Sn plating and Sn solder dipping. The addition of Nickel (Ni) under-layer was also applied to examine the correlation to field conditions. The results showed that the whisker length increased in high humidity irrespective of the deposition methods. It was also shown that pure Sn solder dipping mitigated the whisker growth but does not completely prevent it when alloying Sn with 0.4%wtCu. Additionally, Ni under-layer was indicated to be more efficient in mitigating the growth of whisker by prolonging the incubation time for whisker formation.
Resumo:
Interactions between tumour cells and extracellular matrix proteins of the tumour microenvironment play crucial roles in cancer progression. So far, however, there are only a few experimental platforms available that allow us to study these interactions systematically in a mechanically defined three-dimensional (3D) context. Here, we have studied the effect of integrin binding motifs found within common extracellular matrix (ECM) proteins on 3D breast (MCF-7) and prostate (PC-3, LNCaP) cancer cell cultures, and co-cultures with endothelial and mesenchymal stromal cells. For this purpose, matrix metalloproteinase-degradable biohybrid poly(ethylene) glycol-heparin hydrogels were decorated with the peptide motifs RGD, GFOGER (collagen I), or IKVAV (laminin-111). Over 14 days, cancer spheroids of 100-200µm formed. While the morphology of poorly invasive MCF-7 and LNCaP cells was not modulated by any of the peptide motifs, the aggressive PC-3 cells exhibited an invasive morphology when cultured in hydrogels comprising IKVAV and GFOGER motifs compared to RGD motifs or nonfunctionalised controls. PC-3 (but not MCF-7 and LNCaP) cell growth and endothelial cell infiltration were also significantly enhanced in IKVAV and GFOGER presenting gels. Taken together, we have established a 3D culture model that allows for dissecting the effect of biochemical cues on processes relevant to early cancer progression. These findings provide a basis for more mechanistic studies that may further advance our understanding of how ECM modulates cancer cell invasion and how to ultimately interfere with this process.
Resumo:
Mycobacterium smegmatis is known to form biofilms and many cell surface molecules like core glycopeptidolipids and short-chain mycolates appear to play important role in the process. However, the involvement of the cell surface molecules in mycobacteria towards complete maturation of biofilms is still not clear. This work demonstrates the importance of the glycopeptidolipid species with hydroxylated alkyl chain and the epoxylated mycolic acids, during the process of biofilm development. In our previous study, we reported the impairment of biofilm formation in rpoZ-deleted M. smegmatis, where rpoZ codes for the ω subunit of RNA polymerase (R. Mathew, R. Mukherjee, R. Balachandar, D. Chatterji, Microbiology 152 (2006) 1741). Here we report the occurrence of planktonic growth in a mc2155 strain which is devoid of rpoZ gene. This strain is deficient in selective incorporation of the hydroxylated glycopeptidolipids and the epoxy mycolates to their respective locations in the cell wall. Hence it forms a mutant biofilm defective in maturation, wherein the cells undertake various alternative metabolic pathways to survive in an environment where oxygen, the terminal electron acceptor, is limiting.
Resumo:
Thin film applications have become increasingly important in our search for multifunctional and economically viable technological solutions of the future. Thin film coatings can be used for a multitude of purposes, ranging from a basic enhancement of aesthetic attributes to the addition of a complex surface functionality. Anything from electronic or optical properties, to an increased catalytic or biological activity, can be added or enhanced by the deposition of a thin film, with a thickness of only a few atomic layers at the best, on an already existing surface. Thin films offer both a means of saving in materials and the possibility for improving properties without a critical enlargement of devices. Nanocluster deposition is a promising new method for the growth of structured thin films. Nanoclusters are small aggregates of atoms or molecules, ranging in sizes from only a few nanometers up to several hundreds of nanometers in diameter. Due to their large surface to volume ratio, and the confinement of atoms and electrons in all three dimensions, nanoclusters exhibit a wide variety of exotic properties that differ notably from those of both single atoms and bulk materials. Nanoclusters are a completely new type of building block for thin film deposition. As preformed entities, clusters provide a new means of tailoring the properties of thin films before their growth, simply by changing the size or composition of the clusters that are to be deposited. Contrary to contemporary methods of thin film growth, which mainly rely on the deposition of single atoms, cluster deposition also allows for a more precise assembly of thin films, as the configuration of single atoms with respect to each other is already predetermined in clusters. Nanocluster deposition offers a possibility for the coating of virtually any material with a nanostructured thin film, and therein the enhancement of already existing physical or chemical properties, or the addition of some exciting new feature. A clearer understanding of cluster-surface interactions, and the growth of thin films by cluster deposition, must, however, be achieved, if clusters are to be successfully used in thin film technologies. Using a combination of experimental techniques and molecular dynamics simulations, both the deposition of nanoclusters, and the growth and modification of cluster-assembled thin films, are studied in this thesis. Emphasis is laid on an understanding of the interaction between metal clusters and surfaces, and therein the behaviour of these clusters during deposition and thin film growth. The behaviour of single metal clusters, as they impact on clean metal surfaces, is analysed in detail, from which it is shown that there exists a cluster size and deposition energy dependent limit, below which epitaxial alignment occurs. If larger clusters are deposited at low energies, or cluster-surface interactions are weaker, non-epitaxial deposition will take place, resulting in the formation of nanocrystalline structures. The effect of cluster size and deposition energy on the morphology of cluster-assembled thin films is also determined, from which it is shown that nanocrystalline cluster-assembled films will be porous. Modification of these thin films, with the purpose of enhancing their mechanical properties and durability, without destroying their nanostructure, is presented. Irradiation with heavy ions is introduced as a feasible method for increasing the density, and therein the mechanical stability, of cluster-assembled thin films, without critically destroying their nanocrystalline properties. The results of this thesis demonstrate that nanocluster deposition is a suitable technique for the growth of nanostructured thin films. The interactions between nanoclusters and their supporting surfaces must, however, be carefully considered, if a controlled growth of cluster-assembled thin films, with precisely tailored properties, is to be achieved.