994 resultados para bone morphogenetic proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Etant une importante source d'énergie, les plantes sont constamment attaquées par des pathogènes. Ne pouvant se mouvoir, elles ont développé des systèmes de défense sophistiqués afin de lutter contre ces prédateurs. Parmi ces systèmes, les voies de signalisation mettant en jeu des éliciteurs endog8nes tels que les jasmonates permettent d'induire la production de protéines de défense telles que les protéines dites "liées à la pathogénèse". Les gènes codant pour ces protéines appartiennent à des familles multigéniques. Le premier but de cette thèse est d'évaluer le nombre de ces gènes dans le génome d'Arabidopsis thaliana et d'estimer la part de ce système de défense, dépendant de la voie de signalisation des jasmonates. Nous avons défini un cluster de seulement 1S gènes sur 266, "liés à la pathogénèse", exclusivement régulés par les jasmonates. De multiples membres des familles des lectines de type jacaline et des inhibiteurs de trypsines semblent dépendre du jasmonate. Présente dans tous les systèmes immunitaires des eucaryotes, la famille des défensines est une famille très intéressante. Chez Arabidopsis thaliana, 317 protéines similaires aux défensines ont été définies, cependant seulement 15 défensines (PDF) sont bien annotées. Ces 15 défensines sont séparées en deux groupes dont un semble avoir évolué plus récemment. Le second but de cette thèse est d'étudier ce groupe de défensines à l'aide de la bioinformatique et des techniques de biologie moléculaire (gêne rapporteur, PCR en temps réel). Nous avons montré que ce groupe contenait une défensine acide intéressante, PDF1.5, qui semblait avoir subi une sélection positive. Cette protéine n'avait encore jamais été étudiée. Contrairement à ce que nous pensions, nous avons établi que cette protéine pouvait avoir une activité biologique liée à la défense. Ce travail de thèse a permis de préciser le nombre de gènes "liées à la pathogénèse" induits par la voie des jasmonates et d'apporter des éléments de réponse sur la question de la redondance des gènes de défense. En conclusion, même si de nombreuses familles de gènes intervenant dans la défense sont bien définies chez Arabidopsis, il reste encore de nombreuses études à faire sur chacun de ces membres. Abstract Being an important source of energy, plants are constantly attacked by herbivores and pathogens. As sessile organisms, they have developed sophisticated defense responses to cope with attack. Among these responses, signalling pathways, using endogenous elicitors including jasmonates (JA), allow the plant to induce the production of defense proteins such as pathogenesis-related (PR) proteins. The genes encoding these proteins belong to multigenic families. The first goal of this thesis was to evaluate the number of PR genes in the genome of Arabidopsis thaliana and estimate how much of this plant defense system was dependent on the jasmonate signaling pathway in leaves. Surprisingly a cluster of only 1S genes out of 2ó6 PR genes was exclusively regulated by JA. Multiple members of the jacalin lectin and trypsin inhibitor gene families were shown to be regulated by JA. Present in all eukaryotic immune systems, defensins are an attractive PR family to study. In Arabidopsis thaliana, 317 defensin-related proteins have been found but just 1S defensins (i.e. PDF family) are well annotated. These defensins are split into 2 groups. One of these groups may have appeared and diversified recently. The second goal of this thesis was to study this defensin gene group combining bioinformatic, reporter gene and quantitative PCR techniques. We have shown that this group contains an interesting acidic defensin, PDF1.S, which seems to have undergone positive selection. No information was known on this protein. We have established that this protein may have a biological activity in plant defense. This thesis allowed us to define the number of PR genes induced by the jasmonate pathway and gave initial leads to explain the redundancy of the PR genes in the genome of Arabidopsis. In conclusion, even if many defense gene families are already defined in the Arabidopsis genome, much work remains to be done on individual members.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P< or =5x10(-8)). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P< or =0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2x10(-19) for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9x10(-8), n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5x10(-6), n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2x10(-3), n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION The purpose of this study was to investigate the association between HLA-DRB1 alleles with susceptibility to rheumatoid arthritis (RA) and production of antibodies against citrullinated proteins (ACPA) and rheumatoid factor (RF). METHODS We studied 408 patients (235 with RA, 173 non-RA) and 269 controls. ACPA, RF and HLA-DR typing were determined. RESULTS We found an increased frequency of HLA DRB1 alleles with the shared epitope (SE) in ACPA-positive RA. Inversely, HLA DRB1 alleles encoding DERAA sequences were more frequent in controls than in ACPA-positive RA, and a similar trend was found for HLA DR3. However, these results could not be confirmed after stratification for the presence of the SE, probably due to the relatively low number of patients. These data may suggest that the presence of these alleles may confer a protective role for ACPA-positive RA. In RA patients we observed association between SE alleles and ACPA titers in a dose-dependent effect. The presence of HLA DR3 or DERAA-encoding alleles was associated with markedly reduced ACPA levels. No association between RF titers and HLA DR3 or DERAA-encoding alleles was found. CONCLUSIONS HLA DRB1 alleles with the SE are associated with production of ACPA. DERAA-encoding HLA-DR alleles and HLA DR3 may be protective for ACPA-positive RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematogones are normal B-lymphoid precursors that multiply in the bone marrow of small children and of adults with ferropenic anaemia, neuroblastoma or idiopathic thrombocytopenic purpura. They are not normally found in peripheral blood, and the immunophenotype is virtually indistinguishable from that of B lymphoblasts. We discuss the case of a 3-month infant with an active cytomegalovirus infection, with hepatitis and pancytopenia associated with 13% hematogones in the bone marrow

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fanconi anemia (FA) is a genetically heterogeneous chromosome instability syndrome associated with congenital abnormalities, bone marrow failure, and cancer predisposition. Eight FA proteins form a nuclear core complex, which promotes tolerance of DNA lesions in S phase, but the underlying mechanisms are still elusive. We reported recently that the FA core complex protein FANCM can translocate Holliday junctions. Here we show that FANCM promotes reversal of model replication forks via concerted displacement and annealing of the nascent and parental DNA strands. Fork reversal by FANCM also occurs when the lagging strand template is partially single-stranded and bound by RPA. The combined fork reversal and branch migration activities of FANCM lead to extensive regression of model replication forks. These observations provide evidence that FANCM can remodel replication fork structures and suggest a mechanism by which FANCM could promote DNA damage tolerance in S phase

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé : c-Myc, le premier facteur de transcription de la famille Myc a été découvert il y a maintenant trente ans. Il reste à l'heure actuelle parmi les plus puissants proto-oncogènes connus. c-Myc est dérégulé dans plus de 50% des cancers, où il promeut la prolifération, la croissance cellulaire, et la néoangiogenèse. Myc peut aussi influencer de nombreuses autres fonctions de par sa capacité à activer ou à réprimer la transcription de nombreux gènes, et à agir globalement sur le génome à travers des modifications épigénétiques de la chromatine. La famille d'oncogènes Myc comprend, chez les mammifères, trois protéines structurellement proches: c-Myc, N-Myc et L-Myc. Ces protéines ont les mêmes proprietés biochimiques, exercent les mêmes fonctions mais sont le plus souvent exprimées de façon mutuellement exclusive. Myc a été récemment identifié comme un facteur clef dans la maintenance des cellules souches embryonnaires et adultes ainsi que dans la réacquisition des proprietés des cellules souches. Nous avons précédemment démontré que l'élimination de c-Myc provoque une accumulation de cellules souches hématopoïétiques (CSH) suite à un défaut de différenciation lié à la niche. Les CSH sont responsables de la production de tous les éléments cellulaires du sang pour toute la vie de l'individu et sont définies par leur capacité à s'auto-renouveler tout en produisant des précurseurs hématopoïétiques. Afin de mieux comprendre la fonction de Myc dans les CSH, nous avons choisi de combiner l'utilisation de modèles de souris génétiquement modifiées à une caractérisation systématique des schémas d'expression de c-Myc, N-Myc et L-Myc dans tout le système hématopoïétique. Nous avons ainsi découvert que les CSH les plus immatures expriment des quantités équivalentes de transcrits de c-myc et N-myc. Si les CSH déficientes en N-myc seulement ont une capacité d'auto-renouvellement à long-terme réduite, l'invalidation combinée des gènes c-myc et N-myc conduit à une pan-cytopénie suivie d'une mort rapide de l'animal, pour cause d'apoptose de tous les types cellulaires hématopoïétiques. En particulier, les CSH en cours d'auto-renouvelemment, mais pas les CSH quiescentes, accumulent du Granzyme B (GrB), une molécule fortement cytotoxique qui provoque une mort cellulaire rapide. Ces données ont ainsi mis au jour un nouveau mécanisme dont dépend la survie des CSH, à savoir la répression du GrB, une enzyme typiquement utilisée par le système immunitaire inné pour éliminer les tumeurs et les cellules infectées par des virus. Dans le but d'évaluer l'étendue de la redondance entre c-Myc et N-Myc dans les CSH, nous avons d'une part examiné des souris dans lesquelles les séquences codantes de c-myc sont remplacées par celles de N-myc (NCR) et d'autre part nous avons géneré une série allèlique de myc en éliminant de façon combinatoire un ou plusieurs allèles de c-myc et/ou de N-myc. Alors que l'analyse des souris NCR suggère que c-Myc et N-Myc sont qualitativement redondants, la série allélique indique que les efficiences avec lesquelles ces deux protéines influencent des procédés essentiels à la maintenance des CSH sont différentes. En conclusion, nos données génétiques montrent que l'activité générale de MYC, fournie par c-Myc et N-Myc, contrôle plusieurs aspects cruciaux de la fonction des CSH, notamment l'auto-renouvellement, la survie et la différenciation. Abstract : c-Myc, the first Myc transcription factor was discovered 30 years ago and is to date one of the most potent proto-oncogenes described. It is found to be misregulated in over 50% of all cancers, where it drives proliferation, cell growth and neo-angiogenesis. Myc can also influence a variety of other functions, owing to its ability to activate and repress transcription of many target genes and to globally regulate the genome via epigenetic modifications of the chromatin. The Myc family of oncogenes consists of three closely related proteins in mammals: c-Myc, N-Myc and L-Myc. These proteins share the same biochemical properties, exert mostly the same functions, but are most often expressed in mutually exclusive patterns. Myc is now emerging as a key factor in maintenance of embryonic and adult stem cells as well as in reacquisition of stem cell properties, including induced reprogramming. We previously showed that c-Myc deficiency can cause the accumulation of hematopoietic stem cells (HSCs) due to a niche dependent differentiation defect. HSCs are responsible for life-long replenishment of all blood cell types, and are defined by their ability to self-renew while concomitantly giving rise to more commited progenitors. To gain further insight into the function of Myc in HSCs, in this study we combine the use of genetically-modified mouse models with the systematic characterization of c-myc, N-myc and L-myc transcription patterns throughout the hematopoietic system. Interestingly, the most immature HSCs express not only c-myc, but also about equal amounts of N-myc transcripts. Although conditional deletion of N-myc alone in the bone marrow does not affect steady-state hematopoiesis, N-myc null HSCs show impaired long-term self-renewal capacity. Strikingly, combined deficiency of c-Myc and N-Myc results in pan-cytopenia and rapid lethality, due to the apoptosis of most hematopoietic cell types. In particular, self-renewing HSCs, but not quiescent HSCs or progenitor cell types rapidly up-regulate and accumulate the potent cytotoxic molecule GranzymeB (GrB), causing their rapid cell death. These data uncover a novel pathway on which HSC survival depends on, namely repression of GrB, a molecule typically used by the innate immune system to eliminate tumor and virus infected cells. To evaluate the extent of redundancy between c-Myc and N-Myc in HSCs, we examined mice in which c-myc coding sequences are replaced by that of N-myc (NCR) and also generated an allelic series of myc, by combinatorially deleting one or several c-myc and/or N-myc alleles. While the analysis of NCR mice suggests that c-Myc and N-Myc are qualitatively functionally redundant, our allelic series indicates that the efficiencies with which these two proteins affect crucial HSC maintenance processes are likely to be distinct. Collectively, our genetic data show that general "MYC" activity delivered by c-Myc and N-Myc controls crucial aspects of HSC function, including self-renewal, survival and niche dependent differentiation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Intracoronary administration of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction. The optimal time point of administration of BM-MNC is still uncertain and has rarely been addressed prospectively in randomized clinical trials. METHODS AND RESULTS: In a multicenter study, we randomized 200 patients with large, successfully reperfused ST-segment elevation myocardial infarction in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were administered either early (ie, 5 to 7 days) or late (ie, 3 to 4 weeks) after acute myocardial infarction. Cardiac magnetic resonance imaging was performed at baseline and after 4 months. The primary end point was the change from baseline to 4 months in global LV ejection fraction between the 2 treatment groups and the control group. The absolute change in LV ejection fraction from baseline to 4 months was -0.4±8.8% (mean±SD; P=0.74 versus baseline) in the control group, 1.8±8.4% (P=0.12 versus baseline) in the early group, and 0.8±7.6% (P=0.45 versus baseline) in the late group. The treatment effect of BM-MNC as estimated by ANCOVA was 1.25 (95% confidence interval, -1.83 to 4.32; P=0.42) for the early therapy group and 0.55 (95% confidence interval, -2.61 to 3.71; P=0.73) for the late therapy group. CONCLUSIONS: Among patients with ST-segment elevation myocardial infarction and LV dysfunction after successful reperfusion, intracoronary infusion of BM-MNC at either 5 to 7 days or 3 to 4 weeks after acute myocardial infarction did not improve LV function at 4-month follow-up. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00355186.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Local antibiotics may significantly improve the treatmentoutcome in bone infection without systemic toxicity. For impregnationof polymethylmethacrylate (PMMA), gentamicin, vancomycin and/orclindamycin are currently used. A new lipopeptid antibiotic,daptomycin, is a promising candidate for local treatment due to itsspectrum against staphylococci and enterococci (including multiresistantstrains), and concentration-dependent rapid bactericidalactivity. We investigated activity of antibiotic-loaded PMMA againstStaphylococcus epidermidis biofilms using an ultra-sensitive bacterialheat detection method (microcalorimetry).Methods: Staphylococcus epidermidis (strain RP62A, susceptibleto daptomycin, vancomycin and gentamicin) at concentration 106bacteria/ml was incubated with 2 g-PMMA block (Palacos, HeraeusMedical, Hanau, Germany) in 25 ml tryptic soy broth (TSB)supplemented with calcium. PMMA blocks were preloaded withdaptomycin, vancomycin and gentamicin each at 2 g/40 mg (= 100 mg/block) PMMA. After 72 h-incubation at 35 °C under static conditions,PMMA blocks were rinsed in phosphate-buffered solution (PBS) 5times and transferred in 4 ml-microcalorimetry ampoule filled with 1 mlTSB. Bacterial heat production, which is proportional to the quantityof biofilm on PMMA surface, was measured by isothermalmicrocalorimetry. The detection time was calculated as the time untilthe heat flow reached 20 microwatt.Results: Biomechanical properties did not differ between antibioticloadedand non-loaded PMMA blocks. The mean detection time (±standard deviation) of bacterial heat was 6.5 ± 0.4 h for PMMA withoutantibiotics (negative control), 13.5 ± 4.6 h for PMMA with daptomycin,14.0 ± 4.1 h for PMMA with vancomycin and 5.0 ± 0.4 h for PMMAwith gentamicin.Conclusion: Our data indicates that antibiotics at 2 g/40 mg PMMAdid not change the biomechanical properties of bone cement. Daptomycinand vancomycin were more active than gentamicin against S.epidermidis biofilms when all tested at 2 g/40 mg PMMA. In the nextstep, higher concentrations of daptomycin and their elution kineticneeds to be determined to optimize its antibiofilm activity before usingin the clinical setting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reciprocal interaction between cancer cells and the tissue-specific stroma is critical for primary and metastatic tumor growth progression. Prostate cancer cells colonize preferentially bone (osteotropism), where they alter the physiological balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption, and elicit prevalently an osteoblastic response (osteoinduction). The molecular cues provided by osteoblasts for the survival and growth of bone metastatic prostate cancer cells are largely unknown. We exploited the sufficient divergence between human and mouse RNA sequences together with redefinition of highly species-specific gene arrays by computer-aided and experimental exclusion of cross-hybridizing oligonucleotide probes. This strategy allowed the dissection of the stroma (mouse) from the cancer cell (human) transcriptome in bone metastasis xenograft models of human osteoinductive prostate cancer cells (VCaP and C4-2B). As a result, we generated the osteoblastic bone metastasis-associated stroma transcriptome (OB-BMST). Subtraction of genes shared by inflammation, wound healing and desmoplastic responses, and by the tissue type-independent stroma responses to a variety of non-osteotropic and osteotropic primary cancers generated a curated gene signature ("Core" OB-BMST) putatively representing the bone marrow/bone-specific stroma response to prostate cancer-induced, osteoblastic bone metastasis. The expression pattern of three representative Core OB-BMST genes (PTN, EPHA3 and FSCN1) seems to confirm the bone specificity of this response. A robust induction of genes involved in osteogenesis and angiogenesis dominates both the OB-BMST and Core OB-BMST. This translates in an amplification of hematopoietic and, remarkably, prostate epithelial stem cell niche components that may function as a self-reinforcing bone metastatic niche providing a growth support specific for osteoinductive prostate cancer cells. The induction of this combinatorial stem cell niche is a novel mechanism that may also explain cancer cell osteotropism and local interference with hematopoiesis (myelophthisis). Accordingly, these stem cell niche components may represent innovative therapeutic targets and/or serum biomarkers in osteoblastic bone metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Specific physical loading leads to enhanced bone development during childhood. A general physical activity program mimicking a real-life situation was successful at increasing general physical health in children. Yet, it is not clear whether it can equally increase bone mineral mass. We performed a cluster-randomized controlled trial in children of both gender and different pubertal stages to determine whether a school-based physical activity (PA) program during one school-year influences bone mineral content (BMC) and density (BMD), irrespective of gender.Methods: Twenty-eight 1st and 5th grade (6-7 and 11-12 year-old) classes were cluster randomized to an intervention (INT, 16 classes, n = 297) and control (CON; 12 classes, n = 205) group. The intervention consisted of a multi-component PA intervention including daily physical education with at least 10 min of jumping or strength training exercises of various intensities. Measurements included anthropometry, and BMC and BMD of total body, femoral neck, total hip and lumbar spine using dual-energy X-ray absorptiometry (DXA). PA was assessed by accelerometers and Tanner stages by questionnaires. Analyses were performed by a regression model adjusted for gender, baseline height and weight, baseline PA, post-intervention pubertal stage, baseline BMC, and cluster.Results: 275 (72%) of 380 children who initially agreed to have DXA measurements had also post-intervention DXA and PA data. Mean age of prepubertal and pubertal children at baseline was 8.7 +/- 2.1 and 11.1 +/- 0.6 years, respectively. Compared to CON, children in INT showed statistically significant increases in BMC of total body, femoral neck, and lumbar spine by 5.5%, 5.4% and 4.7% (all p < 0.05), respectively, and BMD of total body and lumbar spine by 8.4% and 7.3% (both p < 0.01), respectively. There was no gender*group, but a pubertal stage*group interaction consistently favoring prepubertal children.Conclusion: A general school-based PA intervention can increase bone health in elementary school children of both genders, particularly before puberty. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: 1) to create a new and reproducible animal model to produce heterotopic ossification (HO) 2) to be able to exactly quantify the amount of HO using a microCT scan and 3) to prove the hypothesis that COX-2 inhibitors are efficacious in the prevention of HO. Methods: We developed a IACUC-approved Lewis rat model, in which the ventral side of the right femur was scraped to mechanically disrupt the periosteum. By clamping the vastus intermedius ischemic injury to the muscle was produced to enhance HO. Finally homologous bone marrow from a donor rat was placed on the anterior surface of the femur. Half of the study group (8 rats) received chow mixed with a COX-2 inhibitor, while the other half received normal chow. After 6 weeks the animals were sacrificed, the femurs removed and imaged by microCT. Grading of HO was based on the thickness of ectopic bone as evaluated in a blinded fashion by 3 independent observers. Results: All animals developed bilateral HO. Rats treated with COX-2 inhibitors developed significantly less ectopic bone than the control group rats. Conclusions: The results suggest that we have created a very reliable, reproducible model to form ectopic bone in rats. Using the microCT we can precisely quantify the amount of HO. We have been able to show that COX-2 inhibitors significantly decrease the amount of HO formation and are thus a good alternative to non-specific NSAIDs with their potential serious side effects on the gastrointestinal tract and on hemo-stastis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per year, the majority of which are children and pregnant women in developing countries. There has been significant effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on describing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, these aspects of parasite biochemistry need to be explored further.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI) is a genetic disorder of connective tissue characterized by bone fragility and alteration in synthesis and posttranslational modification of type I collagen. Autosomal dominant OI is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Bruck syndrome is a recessive disorder featuring congenital contractures in addition to bone fragility; Bruck syndrome type 2 is caused by mutations in PLOD2 encoding collagen lysyl hydroxylase, whereas Bruck syndrome type 1 has been mapped to chromosome 17, with evidence suggesting region 17p12, but the gene has remained elusive so far. Recently, the molecular spectrum of OI has been expanded with the description of the basis of a unique posttranslational modification of type I procollagen, that is, 3-prolyl-hydroxylation. Three proteins, cartilage-associated protein (CRTAP), prolyl-3-hydroxylase-1 (P3H1, encoded by the LEPRE1 gene), and the prolyl cis-trans isomerase cyclophilin-B (PPIB), form a complex that is required for fibrillar collagen 3-prolyl-hydroxylation, and mutations in each gene have been shown to cause recessive forms of OI. Since then, an additional putative collagen chaperone complex, composed of FKBP10 (also known as FKBP65) and SERPINH1 (also known as HSP47), also has been shown to be mutated in recessive OI. Here we describe five families with OI-like bone fragility in association with congenital contractures who all had FKBP10 mutations. Therefore, we conclude that FKBP10 mutations are a cause of recessive osteogenesis imperfecta and Bruck syndrome, possibly Bruck syndrome Type 1 since the location on chromosome 17 has not been definitely localized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytoskeleton is important for neuronal morphogenesis. During the postnatal development of cat brain, the molecular composition of the neuronal cytoskeleton changes with maturation. Several of its proteins change in their rate of expression, in their degree of phosphorylation, in their subcellular distribution, or in their biochemical properties. It is proposed that phosphorylation is an essential mechanism to regulate the plasticity of the early, juvenile-type cytoskeleton. Among such proteins are several microtubule-associated proteins (MAPs), such as MAP5a, MAP2c or the juvenile tau proteins. Phosphorylation may also act on neurofilaments, postulated to be involved in the adult-type stabilization of axons. These observations imply that phosphorylation may affect cytoskeleton function in axons and dendrites at various developmental stages. Yet, the mechanisms of phosphorylation and its regulation cascades are largely unknown. In view of the topic of this issue on CD15, the potential role of matrix molecules being involved in the modulation of phosphorylation activity and of cytoskeletal properties is addressed.