989 resultados para behavioral models
Resumo:
Eurymetopum is an Andean clerid genus with 22 species. We modeled the ecological niches of 19 species with Maxent and used them as potential distributional maps to identify patterns of richness and endemicity. All modeled species maps were overlapped in a single map in order to determine richness. We performed an optimality analysis with NDM/VNDM in a grid of 1º latitude-longitude in order to identify endemism. We found a highly rich area, located between 32º and 41º south latitude, where the richest pixels have 16 species. One area of endemism was identified, located in the Maule and Valdivian Forest biogeographic provinces, which extends also to the Santiago province of the Central Chilean subregion, and contains four endemic species (E. parallelum, E. prasinum, E. proteus, and E. viride), as well as 16 non-endemic species. The sympatry of these phylogenetically unrelated species might indicate ancient vicariance processes, followed by episodes of dispersal. Based on our results, we suggest a close relationship between these provinces, with the Maule representing a complex area.
Resumo:
This paper theoretically and empirically documents a puzzle that arises when an RBC economy with a job matching function is used to model unemployment. The standard model can generate sufficiently large cyclical fluctuations in unemployment, or a sufficiently small response of unemployment to labor market policies, but it cannot do both. Variable search and separation, finite UI benefit duration, efficiency wages, and capital all fail to resolve this puzzle. However, either sticky wages or match-specific productivity shocks can improve the model's performance by making the firm's flow of surplus more procyclical, which makes hiring more procyclical too.
Resumo:
In this paper I explore the issue of nonlinearity (both in the datageneration process and in the functional form that establishes therelationship between the parameters and the data) regarding the poorperformance of the Generalized Method of Moments (GMM) in small samples.To this purpose I build a sequence of models starting with a simple linearmodel and enlarging it progressively until I approximate a standard (nonlinear)neoclassical growth model. I then use simulation techniques to find the smallsample distribution of the GMM estimators in each of the models.
Resumo:
The paper proposes a numerical solution method for general equilibrium models with a continuum of heterogeneous agents, which combines elements of projection and of perturbation methods. The basic idea is to solve first for the stationary solutionof the model, without aggregate shocks but with fully specified idiosyncratic shocks. Afterwards one computes a first-order perturbation of the solution in the aggregate shocks. This approach allows to include a high-dimensional representation of the cross-sectional distribution in the state vector. The method is applied to a model of household saving with uninsurable income risk and liquidity constraints. The model includes not only productivity shocks, but also shocks to redistributive taxation, which cause substantial short-run variation in the cross-sectional distribution of wealth. If those shocks are operative, it is shown that a solution method based on very few statistics of the distribution is not suitable, while the proposed method can solve the model with high accuracy, at least for the case of small aggregate shocks. Techniques are discussed to reduce the dimension of the state space such that higher order perturbations are feasible.Matlab programs to solve the model can be downloaded.
Resumo:
Some current utility models presume that people are concerned with their relative standing in a reference group. If this is true, do certain types care more about this than others? Using simple binary decisions and self-reported happiness, we investigate both the prevalence of ``difference aversion'' and whether happiness levels influence the taste for social comparisons. Our decision tasks distinguish between a person s desire to achieving the social optimum, equality or advantageous relative standing. Most people appear to disregard relative payoffs, instead typically making choices resulting in higher social payoffs. While we do not find a strong general correlation between happiness and concern for relative payoffs, we do observe that a willingness to lower another person s payoff below one s own (competitive preferences) seems correlated with unhappiness.
Resumo:
A new direction of research in Competitive Location theory incorporatestheories of Consumer Choice Behavior in its models. Following thisdirection, this paper studies the importance of consumer behavior withrespect to distance or transportation costs in the optimality oflocations obtained by traditional Competitive Location models. To dothis, it considers different ways of defining a key parameter in thebasic Maximum Capture model (MAXCAP). This parameter will reflectvarious ways of taking into account distance based on several ConsumerChoice Behavior theories. The optimal locations and the deviation indemand captured when the optimal locations of the other models are usedinstead of the true ones, are computed for each model. A metaheuristicbased on GRASP and Tabu search procedure is presented to solve all themodels. Computational experience and an application to 55-node networkare also presented.
Resumo:
This paper studies the short run correlation of inflation and money growth. We study whether a model of learning can do better than a model of rational expectations, we focus our study on countries of high inflation. We take the money process as an exogenous variable, estimated from the data through a switching regime process. We findthat the rational expectations model and the model of learning both offer very good explanations for the joint behavior of money and prices.
Resumo:
Species' geographic ranges are usually considered as basic units in macroecology and biogeography, yet it is still difficult to measure them accurately for many reasons. About 20 years ago, researchers started using local data on species' occurrences to estimate broad scale ranges, thereby establishing the niche modeling approach. However, there are still many problems in model evaluation and application, and one of the solutions is to find a consensus solution among models derived from different mathematical and statistical models for niche modeling, climatic projections and variable combination, all of which are sources of uncertainty during niche modeling. In this paper, we discuss this approach of ensemble forecasting and propose that it can be divided into three phases with increasing levels of complexity. Phase I is the simple combination of maps to achieve a consensual and hopefully conservative solution. In Phase II, differences among the maps used are described by multivariate analyses, and Phase III consists of the quantitative evaluation of the relative magnitude of uncertainties from different sources and their mapping. To illustrate these developments, we analyzed the occurrence data of the tiger moth, Utetheisa ornatrix (Lepidoptera, Arctiidae), a Neotropical moth species, and modeled its geographic range in current and future climates.
Resumo:
Behavioral and brain responses to identical stimuli can vary with experimental and task parameters, including the context of stimulus presentation or attention. More surprisingly, computational models suggest that noise-related random fluctuations in brain responses to stimuli would alone be sufficient to engender perceptual differences between physically identical stimuli. In two experiments combining psychophysics and EEG in healthy humans, we investigated brain mechanisms whereby identical stimuli are (erroneously) perceived as different (higher vs lower in pitch or longer vs shorter in duration) in the absence of any change in the experimental context. Even though, as expected, participants' percepts to identical stimuli varied randomly, a classification algorithm based on a mixture of Gaussians model (GMM) showed that there was sufficient information in single-trial EEG to reliably predict participants' judgments of the stimulus dimension. By contrasting electrical neuroimaging analyses of auditory evoked potentials (AEPs) to the identical stimuli as a function of participants' percepts, we identified the precise timing and neural correlates (strength vs topographic modulations) as well as intracranial sources of these erroneous perceptions. In both experiments, AEP differences first occurred ∼100 ms after stimulus onset and were the result of topographic modulations following from changes in the configuration of active brain networks. Source estimations localized the origin of variations in perceived pitch of identical stimuli within right temporal and left frontal areas and of variations in perceived duration within right temporoparietal areas. We discuss our results in terms of providing neurophysiologic evidence for the contribution of random fluctuations in brain activity to conscious perception.
Resumo:
It is well accepted that people resist evidence that contradicts their beliefs.Moreover, despite their training, many scientists reject results that are inconsistent withtheir theories. This phenomenon is discussed in relation to the field of judgment anddecision making by describing four case studies. These concern findings that clinical judgment is less predictive than actuarial models; simple methods have proven superiorto more theoretically correct methods in times series forecasting; equal weighting ofvariables is often more accurate than using differential weights; and decisions cansometimes be improved by discarding relevant information. All findings relate to theapparently difficult-to-accept idea that simple models can predict complex phenomenabetter than complex ones. It is true that there is a scientific market place for ideas.However, like its economic counterpart, it is subject to inefficiencies (e.g., thinness,asymmetric information, and speculative bubbles). Unfortunately, the market is only correct in the long-run. The road to enlightenment is bumpy.
Resumo:
Four general equilibrium search models are compared quantitatively. Thebaseline framework is a calibrated macroeconomic model of the US economydesigned for a welfare analysis of unemployment insurance policy. Theother models make three simple and natural specification changes,regarding tax incidence, monopsony power in wage determination, and therelevant threat point. These specification changes have a major impacton the equilibrium and on the welfare implications of unemploymentinsurance, partly because search externalities magnify the effects ofwage changes. The optimal level of unemployment insurance dependsstrongly on whether raising benefits has a larger impact on searcheffort or on hiring expenditure.
Resumo:
We propose a method to estimate time invariant cyclical DSGE models using the informationprovided by a variety of filters. We treat data filtered with alternative procedures as contaminated proxies of the relevant model-based quantities and estimate structural and non-structuralparameters jointly using a signal extraction approach. We employ simulated data to illustratethe properties of the procedure and compare our conclusions with those obtained when just onefilter is used. We revisit the role of money in the transmission of monetary business cycles.
Resumo:
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be neither a difussion, nor a Markov process as the examples in section 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
Resumo:
In this paper we propose a metaheuristic to solve a new version of the Maximum CaptureProblem. In the original MCP, market capture is obtained by lower traveling distances or lowertraveling time, in this new version not only the traveling time but also the waiting time willaffect the market share. This problem is hard to solve using standard optimization techniques.Metaheuristics are shown to offer accurate results within acceptable computing times.