952 resultados para anode striped twin-fold IC
Resumo:
Context: MicroRNAs (miRNAs) are small noncoding RNAs, functioning as antisense regulators of gene expression by targeting mRNA and contributing to cancer development and progression. More than 50% of miRNA genes are located in cancer-associated genomic regions or in fragile sites of the genome. Objective: The aim of the study was to analyze the differential expression of let-7a, miR-15a, miR-16, miR-21, miR-141, miR-143, miR-145, and miR-150 in corticotropinomas and normal pituitary tissue and verify whether their profile of expression correlates with tumor size or remission after treatment. Material and Methods: ACTH-secreting pituitary tumor samples were obtained during transphenoidal surgery from patients with Cushing disease and normal pituitary tissues from autopsies. The relative expression of miRNAs was measured by real-time PCR using RNU44 and RNU49 as endogenous controls. Relative quantification of miRNA expression was calculated using the 2(-Delta Delta Ct) method. Results: We found underexpression of miR-145 (2.0-fold; P = 0.04), miR-21 (2.4-fold; P = 0.004), miR-141 (2.6-fold; P = 0.02), let-7a (3.3-fold; P = 0.003), miR-150 (3.8-fold; P = 0.04), miR-15a (4.5-fold; P = 0.03), miR-16 (5.0-fold; P = 0.004), and miR-143 (6.4-fold; P = 0.004) in ACTH-secreting pituitary tumors when compared to normal pituitary tissues. There were no differences between miRNA expression and tumor size as well as miRNA expression and ratio of remission after surgery, except in patients presenting lower miR-141 expression who showed a better chance of remission. Conclusion: Our results support the possibility that altered miRNA expression profile might be involved in corticotrophic tumorigenesis. However, the lack of knowledge about miRNA target genes postpones full understanding of the biological functions of down-regulated or up-regulated miRNAs in corticotropinomas. (J Clin Endocrinol Metab 94: 320-323, 2009)
Resumo:
To determine the relation between neutrophil function and the clinical characteristics of systemic lupus erythematosus ( SLE), the superoxide anion (O(2)(-)) production by neutrophils, mediated by Fc gamma R and Fc gamma R/CR cooperation, was studied in 64 SLE patients classified according to their prevalent clinical manifestations. Three clinically distinct patterns were designated: ( 1) manifestations associated with the occurrence of cytotoxic antibodies ( SLE-I group); ( 2) manifestations associated with circulating immune complexes ( IC; SLE-II group), and ( 3) manifestations associated with IC and cytotoxic antibodies ( SLE-III group). O(2)(-) production was evaluated by a lucigenin-dependent chemiluminescent assay in neutrophils stimulated with ICIgG opsonized or not with complement. No difference in O(2)(-) production was observed when neutrophil responses from healthy controls were compared to the unclassified patients. However, when the SLE patient groups were considered, the following differences were observed: ( 1) SLE-I neutrophils showed lower O(2)(-) production mediated by the IgG receptor ( Fc gamma R) with the cooperation of complement receptors ( Fc gamma R/ CR) than observed in the SLE-II, SLE-III, and healthy groups; ( 2) neutrophils from the SLE-II group showed a decreased O(2)(-) production mediated by Fc gamma R/ CR compared to the SLE-III group, ( 3) SLE-III neutrophils produced more O(2)(-) than neutrophils from the SLE-II and control groups, and ( 4) CR showed inefficiency in mediating the O(2)(-) production by neutrophils from the SLE-I group. Comparative experiments on the kinetics of chemiluminescence ( CL; T(max) and CL(max)) disclosed differences only for the SLE- I group. Taken together, these results suggest that differences in oxidative metabolism of neutrophils mediated by Fc gamma R/ CR may reflect an acquired characteristic of disease associated with distinct clinical manifestations.
Resumo:
Primary lung tumors are rare in children, and mucoepidermoid carcinoma (MEC) represents less than 10% of them. Additionally, MEC arising from bronchogenic cysts (BC) is particularly unusual. We describe the clinical and genetic findings on a MEC occurring within a previous location of a BC in an adolescent. This particular association has not been previously reported. The lesion revealed normal karyotype without the typical t(11;19)(q21;p13) translocation. Cyclin D1 overexpression (165-fold increase) was demonstrated by real-time PCR although FISH assessment showed normal hybridization at 11q13. Information on these unusual clinical presentations may present relevant insight on tumorigenesis of infrequent pediatric pulmonary tumors. Pediatr Blood Cancer 2011;56:311-313. (C) 2010 Wiley-Liss, Inc.
Resumo:
Aims Compared with other non-steroid anti-inflammatory drugs (NSAIDs), aspirin is not correlated to hypertension. It has been shown that aspirin has unique vasodilator action in vivo, offering an explanation for the unique blood pressure effect of aspirin. In the present study, we investigate the mechanism whereby salicylates (aspirin and sodium salicylate) dilate blood vessels. Methods and results Rat aortic or mesenteric arterial rings were used to test the vascular effect of salicylates and other NSAIDs. RhoA translocation and the phosphorylation of MYPT1, the regulatory subunit of myosin light chain phosphatase, were measured by western blot, as evidenced for RhoA/Rho-kinase activation. Salicylates, but not other NSAIDs, relaxed contraction induced by most tested constrictors except for calyculin A, indicating that RhoA/Rho-kinase-mediated calcium sensitization is involved. The involvement of RhoA/Rho kinase in vasodilation by salicylates was confirmed by measurements of RhoA translocation and MYPT1 phosphorylation. The calculated half maximal inhibitory concentration (IC(50)) of vasodilation was apparently higher than that of cyclooxygenase inhibition, but comparable to that of proline-rich tyrosine kinase 2 (PYK2) inhibition. Over-expression of PYK2 induced RhoA translocation and MYPT1 phosphorylation, and these effects were markedly inhibited by sodium salicylate treatment. Consistent with the ex vitro vascular effects, sodium salicylate acutely decreased blood pressure in spontaneous hypertensive rats but not in Wistar Kyoto rats. Conclusion Salicylates dilate blood vessels through inhibiting PYK2-mediated RhoA/Rho-kinase activation and thus lower blood pressure.
Resumo:
Altered activity of matrix metalloproteinases (MMPs) is implicated in the vascular remodeling of hypertension. We examined whether increased MMP-2 expression/activity plays a role in the vascular remodeling and dysfunction found in the two-kidney, one-clip (2K-1C) hypertension. Sham operated or 2K-1C hypertension rats were treated with doxycycline 30 mg/(kg day) (or vehicle). Systolic blood pressure was monitored weekly. After 8 weeks of treatment, aortic rings were isolated to assess endothelium-dependent and independent relaxations. Quantitative morphometry of structural changes, collagen, and elastin contents in the aortic wall were studied in hematoxylin/eosin, Sirius Red, and Orceine stained aortic sections, respectively. Aortic MMP-2 levels were determined by gelatin zymography and aortic MMP-2 proteolytic activity was measured using DQ gelatin as the substrate after MMP-2 was captured by a specific antibody and immobilized on a microplate. Aortic MMP-2/tissue inhibitor of metalloprotemases (TIMP)-2 mRNA levels were determined by real time RT-PCR. Doxycycline attenuated 2K-1C hypertension (215 +/- 8 mmHg versus 167 +/- 13 mmHg in 2K-1C rats and 2K-1C + doxy rats, respectively; P < 0.01) and prevented the 35% reduction in endothelium-dependent vasorelaxation found in 2K-1C rats. Doxycycline prevented the increases in media thickness, and was associated with lower media/lumen and cross-sectional areas (all P<0.01). Doxycycline also prevented excessive collagen and elastin deposition in the vascular wall. Increased MMP-2 and Pro-MMP-2 levels and MMP-2 activity were found in the aortas of 2K-1C rats (all P<0.05). A 21-fold increase (P<0.001) in the ratio of MMP-2/TIMP-2 mRNA expression was found in the 2K-1C group, whereas this ratio remained unaltered in 2K-1C+doxy rats. Our results suggest that MMP-2 plays a role in 2K-1C hypertension and its structural and functional vascular changes, which were attenuated by doxycycline. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We demonstrated previously that, in mice with chronic angiotensin II-dependent hypertension, gp91phoxcontaining NADPH oxidase is not involved in the development of high blood pressure, despite being important in redox signaling. Here we sought to determine whether a gp91phox homologue, Nox1, may be important in blood pressure elevation and activation of redox-sensitive pathways in a model in which the renin-angiotensin system is chronically upregulated. Nox1-deficient mice and transgenic mice expressing human renin (TTRhRen) were crossed, and 4 genotypes were generated: control, TTRhRen, Nox1-deficient, and TTRhRen Nox1-deficient. Blood pressure and oxidative stress (systemic and renal) were increased in TTRhRen mice (P < 0.05). This was associated with increased NADPH oxidase activation. Nox1 deficiency had no effect on the development of hypertension in TTRhRen mice. Phosphorylation of c-Src, mitogen-activated protein kinases, and focal adhesion kinase was significantly increased 2-to 3-fold in kidneys from TTRhRen mice. Activation of c-Src, p38 mitogen-activated protein kinase, c-Jun N-terminal kinase, and focal adhesion kinase but not of extracellular signal regulated kinase 1/2 or extracellular signal regulated kinase 5, was reduced in TTRhRen/Nox1-deficient mice (P < 0.05). Expression of procollagen III was increased in TTRhRen and TTRhRen/Nox1-deficient mice versus control mice, whereas vascular cell adhesion molecule-1 was only increased in TTRhRen mice. Our findings demonstrate that, in Nox1-deficient TTRhRen mice, blood pressure is elevated despite reduced NADPH oxidase activation, decreased oxidative stress, and attenuated redox signaling. Our results suggest that Nox1-containing NADPH oxidase plays a key role in the modulation of systemic and renal oxidative stress and redox-dependent signaling but not in the elevation of blood pressure in a model of chronic angiotensin II-dependent hypertension.
Resumo:
The complexes trans-[Ru(NO)(NH(3))(4)L](X)(3) (X = BF(4)(-), PF(6)(-) or Cl(-) and L = N-heterocyclic ligands, P (OEt)(3), SO(3)(-2)), and [Ru(NO)Hedta)] were shown to exhibit IC(50pro) in the range of 36 (L = imN) to 5000 mu M (L = imC). The inhibitory effects of trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) and of the Angeli`s salt on the growth of the intramacrophage amastigote form studied were found to be similar while the trans-[Ru(NH(3))(4)imN(H(2)O)](2+) complex was found not to exhibit any substantial antiamastigote effect. The trans-[Ru(NO)(NH(3))(4)imN](BF(4))(3) compound, administered (500 nmol kg(-1) day(-1)) in BALB/c mice infected with Leishmania major, was found to exhibit a 98% inhibition on the parasite growth. Furthermore, this complex proved to be at least 66 times more efficient than glucantime in in vivo experiments. (C) 2010 Elsevier Masson SAS. All rights reserved.