991 resultados para Wind waves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of non-Maxwellian plasmas is crucial to the understanding of space and astrophysical plasma dynamics. In this paper, we investigate the existence of arbitrary amplitude ion-acoustic solitary waves in an unmagnetized plasma consisting of ions and excess superthermal electrons (modelled by a kappa-type distribution), which is penetrated by an electron beam. A kappa (kappa-) type distribution is assumed for the background electrons. A (Sagdeev-type) pseudopotential formalism is employed to derive an energy-balance like equation. The range of allowed values of the soliton speed (Mach number), wherein solitary waves may exist, is determined. The Mach number range (allowed soliton speed values) becomes narrower under the combined effect of the electron beam and of the superthermal electrons, and may even be reduced to nil (predicting no solitary wave existence) for high enough beam density and low enough kappa (significant superthermality). For fixed values of all other parameters (Mach number, electron beam-to-ion density ratio and electron beam velocity), both soliton amplitude and (electric potential perturbation) profile steepness increase as kappa decreases. The combined occurrence of small-amplitude negative potential structures and larger amplitude positive ones is pointed out, while the dependence of either type on the plasma parameters is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the optical properties of plasmonic nanorod metamaterials in the epsilon-near-zero regime and show, both theoretically and experimentally, that the performance of these composites is strongly affected by nonlocal response of the effective permittivity tensor. We provide the evidence of interference between main and additional waves propagating in the room-temperature nanorod metamaterials and develop an analytical description of this phenomenon. Additional waves are present in the majority of low-loss epsilon-near-zero structures and should be explicitly considered when designing applications of epsilon-near-zero composites, as they represent a separate communication channel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a frequency domain adaptive algorithm for
wave separation in wind instruments. Forward and backward travelling waves are obtained from the signals acquired by two microphones placed along the tube, while the
separation ?lter is adapted from the information given by a
third microphone. Working in the frequency domain has a
series of advantages, among which are the ease of design of
the propagation ?lter and its differentiation with respect to
its parameters.
Although the adaptive algorithm was developed as a ?rst
step for the estimation of playing parameters in wind instruments it can also be used, without any modi?cations, for
other applications such as in-air direction of arrival (DOA)
estimation. Preliminary results on these applications will
also be presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-scale physical and numerical experiments were conducted to investigate the local concentration of waves (monochromatic and group) due to abrupt change of nearshore bathymetry in alongshore direction. Wave run-up motions along the shoreline were measured using an image analysis technique to compare localized concentration of wave energy, when waves propagate a over bathymetry composing rhythmic patterns of mild/steep slope bottom configurations. Measured alongshore variation of maximum wave run-up heights showed significant peak near the boundary, which has sudden alongshore change of depth, both under monochromatic and group wave trains. This phenomenon is found to be due to interaction of waves with neashore currents, which is further enhanced by excitation of long wave components by breaking of group waves. Furthermore, this paper discusses results of preliminary experiments carried out to test the effectiveness of several shore protection structure layouts in mitigating such wave concentrations. Numerical simulations were performed by using a model developed based on Nwogu (1993) Boussinesq-type equations; coupled with a transport equation to model energy dissipation due to wave breaking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper outlines the use of phasor measurement unit (PMU) records to validate models of fixed speed induction generator (FSIG)-based wind farms during frequency transients. Wind turbine manufacturers usually create their own proprietary models which they can supply to power system utilities for stability studies, subject to confidentiality agreements. However, it is desirable to confirm the accuracy of supplied models with measurements from the particular installation, in order to assess their validity under real field conditions. This is prudent due to possible changes in control algorithms and design retrofits, not accurately reflected or omitted in the supplied model. One important aspect of such models, especially for smaller power systems with limited inertia, is their accuracy during system frequency transients. This paper, therefore, assesses the accuracy of FSIG models with regard to frequency stability, and hence validates a subset of the model dynamics. Such models can then be used with confidence to assess wider system stability implications. The measured and simulated response of a wind farm using doubly fed induction generator (DFIG) technology is also assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nonlinear dynamics of electrostatic solitary waves in the form of localized modulated wavepackets is investigated from first principles. Electron-acoustic (EA) excitations are considered in a two-electron plasma, via a fluid formulation. The plasma, assumed to be collisionless and uniform (unmagnetized), is composed of two types of electrons (inertial cold electrons and inertialess kappa-distributed superthermal electrons) and stationary ions. By making use of a multiscale perturbation technique, a nonlinear Schrodinger equation is derived for the modulated envelope, relying on which the occurrence of modulational instability (MI) is investigated in detail. Stationary profile localized EA excitations may exist, in the form of bright solitons (envelope pulses) or dark envelopes (voids). The presence of superthermal electrons modifies the conditions for MI to occur, as well as the associated threshold and growth rate. The concentration of superthermal electrons (i.e., the deviation from a Maxwellian electron distribution) may control or even suppress MI. Furthermore, superthermality affects the characteristics of solitary envelope structures, both qualitatively (supporting one or the other type, for different.) and quantitatively, changing their characteristics (width, amplitude). The stability of bright and dark-type nonlinear structures is confirmed by numerical simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent cold winters and prolonged periods of low wind speeds have prompted concerns about the increasing penetration of wind generation in the Irish and other northern European power systems. On the combined Republic of Ireland and Northern Ireland system there was in excess of 1.5 GW of installed wind power in January 2010. As the penetration of these variable, non-dispatchable generators increases, power systems are becoming more sensitive to weather events on the supply side as well as on the demand side. In the temperate climate of Ireland, sensitivity of supply to weather is mainly due to wind variability while demand sensitivity is driven by space heating or cooling loads. The interplay of these two weather-driven effects is of particular concern if demand spikes driven by low temperatures coincide with periods of low winds. In December 2009 and January 2010 Ireland experienced a prolonged spell of unusually cold conditions. During much of this time, wind generation output was low due to low wind speeds. The impacts of this event are presented as a case study of the effects of weather extremes on power systems with high penetrations of variable renewable generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally on-shore wind power has seen considerable growth in all grid systems. In the coming decade off-shore wind power is also expected to expand rapidly. Wind power is variable and intermittent over various time scales because it is weather dependent. Therefore wind power integration into traditional grids needs additional power system and electricity market planning and management for system balancing. This extra system balancing means that there is additional system costs associated with wind power assimilation. Wind power forecasting and prediction methods are used by system operators to plan unit commitment, scheduling and dispatch and by electricity traders and wind farm owners to maximize profit. Accurate wind power forecasting and prediction has numerous challenges. This paper presents a study of the existing and possible future methods used in wind power forecasting and prediction for both on-shore and off-shore wind farms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dwindling fossil fuel resources and pressures to reduce greenhouse gas (GHG) emissions will result in a more diverse range of generation portfolios for future electricity systems. Irrespective of the portfolio mix the overarching requirement for all electricity suppliers and system operators is that supply instantaneously meets demand and that robust operating standards are maintained to ensure a consistent supply of high quality electricity to end-users. Therefore all electricity market participants will ultimately need to use a variety of tools to balance the power system. Thus the role of demand side management (DSM) with energy storage will be paramount to integrate future diverse generation portfolios. Electric water heating (EWH) has been studied previously, particularly at the domestic level to provide load control, peak shave and to benefit end-users financially with lower bills, particularly in vertically integrated monopolies. In this paper, a continuous Direct Load Control (DLC) EWH algorithm is applied in a liberalized market environment using actual historical electricity system and market data to examine the potential energy savings, cost reductions and electricity system operational improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat Alert and Response Systems (HARS) are currently undergoing testing and implementation in Canada. These programs seek to reduce the adverse health effects of heat waves on human health by issuing weather forecasts and warnings, informing individuals about possible protections from excessive heat, and providing such protections to vulnerable subpopulations and individuals at risk. For these programs to be designed effectively, it is important to know how individuals perceive the heat, what their experience with heat-related illness is, how they protect themselves from excessive heat, and how they acquire information about such protections. In September 2010, we conducted a survey of households in 5 cities in Canada to study these issues. At the time of the survey, these cities had not implemented heat outreach and response systems. The study results indicate that individuals' recollections of recent heat wave events were generally accurate. About 21% of the sample reported feeling unwell during the most recent heat spell, but these illnesses were generally minor. Only in 25 cases out of 243, these illnesses were confirmed or diagnosed by a health care professional. The rate at which our respondents reported heat-related illnesses was higher among those with cardiovascular and respiratory illnesses, was higher among younger respondents and bore no relationship with the availability of air conditioning at home. Most of the respondents indicated that they would not dismiss themselves as