971 resultados para William I, Prince of Orange, 1533-1584.
Resumo:
A simultaneous reduction SO42- to S2- by 2,5-pyridinedicarboxylate under hydrothermal conditions produced a new binuclear copper(II) coordination polymer [CuS(4,4'-bipy)](n) (4,4-bipy = 4,4'-bipyridine) (1). Single crystal X-ray analysis revealed that compound I consisted of sulfur-bridged binuclear copper(II) units with Cu-Cu bonding which were combined with 4,4-bipy to generate a three-dimensional network constructed from mutual interpenetration of two-dimensional (6,3) nets. Crystal data for 1:C10H8CuN2S, tetragonal 14(1)/acd, a = 14.0686(5) Angstrom, b = 14.0686(5) Angstrom, c = 38.759(2) Angstrom, Z = 32. Other characterizations by elemental analysis, IR, EPR and TGA analysis were also described in this paper.
Resumo:
This paper presents results concerning structure and electrochemical characteristics of the La0.67Mg0.33 (Ni0.8Co0.1Mn0.1) (x) (x=2.5-5.0) alloy. It can be found from the result of the Rietveld analyses that the structures of the alloys change obviously with increasing x from 2.5 to 5.0. The main phase of the alloys with x=2.5-3.5 is LaMg2Ni9 phase with a PuNi3-type rhombohedral structure, but the main phase of the alloys with x=4.0-5.0 is LaNi(5)phase with a CaCu5-type hexagonal structure. Furthermore, the phase ratio, lattice parameter and cell volume of the LaMg2Ni9 phase and the LaNi5 phase change with increasing x. The electrochemical studies show that the maximum discharge capacity increases from 214.7 mAh/g (x=2.5) to 391.1 mAh/g (x=3.5) and then decreases to 238.5 mAh/g (x=5.0). As the discharge current density is 1,200 mA/g, the high rate dischargeability (HRD) increases from 51.1% (x=2.5) to 83.7% (x=3.5) and then decreases to 71.6% (x=5.0). Moreover, the exchange current density (I-0) of the alloy electrodes first increases and then decrease with increasing x from 2.5 to 5.0, which is consistent with the variation of the HRD. The cell volume reduces with increasing x in the alloys, which is detrimental to hydrogen diffusion and accordingly decreases the low-temperature dischargeability of the alloy electrodes.
Resumo:
A new kind of luminescent organic-inorganic hybrid material (denoted Hybrid I) consisting of europium 1,10-phenanthroline complexes covalently attached to a silica-based network was prepared by a sol-gel process. 1,10-Phenanthroline grafted to 3-(triethoxysilyl)propyl isocyanate was used as one of the precursors for the preparation of an organic-inorganic hybrid materials. For comparison purposes, the hybrid material (denoted Hybrid II) in which phenanthroline was not grafted onto the silica backbone of the frameworks was also prepared. Elemental analysis; NMR, FT-IR, UV/vis absorption, and luminescence spectroscopies, and luminescence decay analysis were used to characterize the obtained hybrid materials. It is shown that the homogeneity of Hybrid I is superior to that of Hybrid II, and a higher concentration europium can be incorporated into Hybrid I than Hybrid II. Excitation at the ligand absorption wavelength (283 nm) resulted in the strong emission of the Eu3+ D-5(0)-F-7(J) (J = 0-4) transition lines as a result of the efficient energy transfer from the ligands to the EU3+ in Hybrid I. The number of water molecules coordinated to the europium ion was estimated, and the structure of the as-synthesized Hybrid I was predicted on the basis of the experimental results.
Resumo:
Crystal and molecular structure of (2.6-dipropylphenylamide) dimethyl (tetra-methyl cyclopentadienyl) silane titanium dichloride (I) was fully characterized by X-ray diffraction. The crystal is obtained from a mixture of ether/hexane as orthorhombic. with a = 12.658 (3) Angstrom. b = 16.62 (3) Angstrom. c = 11.760 (2) Angstrom. V = 2474.2 (9) Angstrom(3). Z = 4, space group Pnma. R = 0.0399; Componud I compose of the pi-bounded ring with its dimethylsilyl-dipropyl phenyl amido group and the two terminal chloride atoms coordinated to central metal to form a so-called constrained geometry catalyst (CGC) structure. The result of molecular mechanics (MM) calculations on compound I shows that bond lengths and bond angles from the MM calculation are comparable to the data obtained from the X-ray diffraction study. The relation of the structure of CGCs and their catalytic activity by MM calculations is also discussed.
Resumo:
Epitaxial crystallization of syndiotactic polypropylene (sPP) on 2-quinoxalinol (2-Quin) yields, in the lower part of the crystallization range, the less common and metastable form II based on the packing of isochiral helices, rather than the stable antichiral form I. The contact plane is (110)(II). Form II exits only as a thin layer (< 50 nm) near the substrate surface. During further growth away from the surface, a transition takes place to the disordered form I, observed in "conventional" thin film growth. The epitaxial relationship rests only partly on dimensional matching with the chain axis repeat distance (which would be valid for both forms I and II) and on interchain distances. Whereas a better dimensional match would be achieved with form I, selection of the isochiral form II results from better correspondence of the surface topographies of the deposit (110)(II) sPP and substrate 2-Quin (001) contact faces.
Resumo:
Acting as a mimic of type I deiodinase (DI), a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against thyroxine (T-4) into selenocysteines, can catalyze the deiodination of T-4 to 3,5,3'-triiodothyronine (T-3) with dithiothreitol (DTT) as cosubstrate. Investigations into the deiodinative reaction by Se-4C5 revealed the relationship between the initial velocity and substrate concentration was subjected to Michaelis-Menten equation and the reaction mechanism was ping-pong one. The kinetic properties of the catalytic antibody were a little similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 mM, respectively, and V-m value of 270 pmol per mg protein per min. The activity could be sensitively inhibited by PTU with a K-i value of approximately 120 muM at 2.0 muM of T-4 concentration, revealing that PTU was a competitive inhibitor for DTT, (C) 2001 Academic Press.
Resumo:
Determination of aesculin (AL) and aesculetin (AT) by capillary electrophoresis with end-column amperometric detection using a 33 mu m microdisk carbon fiber electrode is described. The HDVs, the effect of pH, buffer concentration, injection voltage, injection time and separation voltage on the peak current response (i(p)) of the analytes and the number of theoretical plates (N) were studied. The method has high sensitivity and good reproducibility. Under the optimum condition - 10 mM, pH 9.00 phosphate buffer, 4 s at 9 kV injection, separation at 15 kV and +1.0 V as the detection potential - low detection limits (S/N = 3) of 0.06 and 0.3 mu M were obtained for AL and AT, respectively. The calibration curve was linear over three orders of magnitude. The relative standard deviations (n = 15) of peak current and migration time were 3.9% and 4.6%, and 0.96% and 0.75% for 15 consecutive injections of 5 mu M AL and AT, respectively. The use of this method for the separation and detection of the two compounds present in the traditional Chinese medicine and human urine samples is also reported. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Three different forms of PS I complexes were isolated from a siphonous marine green alga, Codium fragile, by Triton X-100 sucrose gradient centrifugation. Zone III had a Chl a/b>20, and designated as PS I. core complex CC I because it created only CP I band in mild PAGE. Zone IV and V had absorption at 436 and 674 nm, 467 and 650 nm, and 540 nm, suggesting the presence of Chl a, Chl b, siphonaxanthin and siphonein, Chl a/b were 3.23 and 2.4, respectively. Both CP I and CP I a bands were observed when they were subjected to mild PAGE. Therefore, Zone IV and V were different forms of PS I complexes that consisted of CC I and different amount of light-harvesting complex LHC I. Zone III contained only 66 and 56 ku peptides in SDS-PAGE, while Zone IV and V had 4 different LHC I peptides of 25, 26, 26.2 and 27.5 ku in addition to 66, 56 ku peptides. Fluorescence emission spectra showed that efficient energy transfer were kept among pigments in isolated PS I complexes. Excitation energy absorbed by Chl b, siphonaxanthin and siphonein can be transferred to Chl a.
Resumo:
By mild PAGE method, 11, 11, 7 and 9 chlorophyll-protein complexes were isolated from two species of siphonous green algae ( Codium fragile (Sur.) Harlot and Bryopsis corticulans Setch.), green alga (Ulothrix flacca (Dillw.) Thur.), and spinach (Spinacia oleracea Mill.), respectively. Apparent molecular weights, Chi a/b ratios, distribution of chlorophyll, absorption spectra, low temperature fluorescence spectra of these complexes were determined, and compared with one another. PS I complexes of two siphonous green algae are larger in apparent molecular weight because of the attachment of relative highly aggregated LHC I. Four isolated light-harvesting complexes of PSII are all siphonaxanthin-Chl a/b-protein complexes, and they are not monomers and oligomers like those in higher plants. Especially, the absence of 730 nn fluorescence in PS I complexes indicates a distinct structure and energy transfer pattern.
Resumo:
A new method to measure ocean wave slope spectra using fully polarimetric synthetic aperture radar (POLSAR) data was developed without the need for a complex hydrodynamic modulation transform function. There is no explicit use of a hydrodynamic modulation transfer function. This function is not clearly known and is based on hydrodynamic assumptions. The method is different from those developed by Schuler and colleagues or Pottier but complements their methods. The results estimated from NASA Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) C-band polarimetric SAR data show that the ocean wavelength, wave direction, and significant wave height are in agreement with buoy measurements. The proposed method can be employed by future satellite missions such as RADARSAT-2.
Resumo:
Bain, William, 'In Praise of Folly: International Administration and the Corruption of Humanity', International Affairs, (2006) 82(3) pp.525-538 RAE2008
Resumo:
Wydział Neofilologii: Instytut Filologii Angielskiej
Resumo:
Popular medieval English romances were composed and received within the social consciousness of a distinctly patriarchal culture. This study examines the way in which the dynamic of these texts is significantly influenced by the consequences of female endeavour, in the context of an autonomous feminine presence in both the real and imagined worlds of medieval England, and the authority with which this is presented in various narratives, with a particular focus on Sir Thomas Malory’s Morte Darthur. Chapter One of this study establishes the social and economic positioning of the female in fifteenth-century England, and her capacity for literary engagement; I will then apply this model of female autonomy and authority to a wider discussion of texts contemporary with Malory in Chapters Two and Three, in anticipation of a more detailed study of Le Morte Darthur in Chapters Four and Five. My research explores the female presence and influence in these texts according to certain types: namely the lover, the victim, the ruler, and the temptress. In the case of Malory, the crux of my observations centres on the paradox of the capacity for power in perceived vulnerability, incorporating the presentation of women in this patriarchal culture as being vulnerable and in need of protection, while simultaneously acting as a significant threat to chivalric society by manipulating this apparent fragility, to the detriment of the chivalric knight. In this sense, women can be perceived as being an architect of the romance world, while simultaneously acting as its saboteur. In essence, this study offers an innovative interpretation of female autonomy and authority in medieval romance, presenting an exploration of the physical, intellectual, and emotional placement of women in both the historical and literary worlds of fifteenth-century England, while examining the implications of female conduct on Malory’s Arthurian society.
Resumo:
The development of a new bioprocess requires several steps from initial concept to a practical and feasible application. Industrial applications of fungal pigments will depend on: (i) safety of consumption, (ii) stability of the pigments to the food processing conditions required by the products where they will be incorporated and (iii) high production yields so that production costs are reasonable. Of these requirements the first involves the highest research costs and the practical application of this type of processes may face several hurdles until final regulatory approval as a new food ingredient. Therefore, before going through expensive research to have them accepted as new products, the process potential should be assessed early on, and this brings forward pigment stability studies and process optimisation goals. Only ingredients that are usable in economically feasible conditions should progress to regulatory approval. This thesis covers these two aspects, stability and process optimisation, for a potential new ingredient; natural red colour, produced by microbial fermentation. The main goal was to design, optimise and scale-up the production process of red pigments by Penicillium purpurogenum GH2. The approach followed to reach this objective was first to establish that pigments produced by Penicillium purpurogenum GH2 are sufficiently stable under different processing conditions (thermal and non-thermal) that can be found in food and textile industries. Once defined that pigments were stable enough, the work progressed towards process optimisation, aiming for the highest productivity using submerged fermentation as production culture. Optimum production conditions defined at flask scale were used to scale up the pigment production process to a pilot reactor scale. Finally, the potential applications of the pigments were assessed. Based on this sequence of specific targets, the thesis was structured in six parts, containing a total of nine chapters. Engineering design of a bioprocess for the production of natural red colourants by submerged fermentation of the thermophilic fungus Penicillium purpurogenum GH2.
Resumo:
Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.