1000 resultados para VAMP5 gene
Resumo:
It is widely accepted that mitochondrial DNA (mtDNA) control region evolves faster than protein encoding genes with few exceptions. In the present study, we sequenced the mitochondrial cytochrome b gene (cyt b) and control region (CR) and compared their rates in 93 specimens representing 67 species of loaches and some related taxa in the Cobitoidea (Order Cypriniformes). The results showed that sequence divergences of the CR were broadly higher than those of the cyt b (about 1.83 times). However, in considering only closely related species, CR sequence evolution was slower than that of cyt b gene (ratio of CR/cyt b is 0.78), a pattern that is found to be very common in Cypriniformes. Combined data of the cyt b and CR were used to estimate the phylogenetic relationship of the Cobitoidea by maximum parsimony, neighbor-joining, and Bayesian methods. With Cyprinus carpio and Danio rerio as outgroups, three analyses identified the same four lineages representing four subfamilies of loaches, with Botiinae on the basal-most clade. The phylogenctic relationship of the Cobitoidea was ((Catostomidae + Gyrinocheilidae) + (Botiinae + (Balitorinae + (Cobitinae + Nemacheilinae)))), which indicated that Sawada's Cobitidae (including Cobitinae and Botiinae) was not monophyletic. Our molecular phylogenetic analyses are in very close agreement with the phylogenetic results based on the morphological data proposed by Nalbant and Bianco, wherein these four subfamilies were elevated to the family level as Botiidae, Balitoridae, Cobitidae, and Nemacheilidae. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Interleukin-1 beta (IL-1 beta) is one of the pivotal early response pro-inflammatory cytokines that enables organisms to respond to infection and induces a cascade of reactions leading to inflammation. In spite of its importance and two decades of studies in the mammalian species, genes encoding IL-1 beta were not identified from non-mammalian species until recently. Recent research, particularly with genomic approaches, has led to sequencing of IL-1 beta from many species. Clinical studies also Suggested IL-1 beta as an immunoreagulatory molecule potentially useful for enhancing vaccination. However, no IL-1 beta genes have been identified from channel catfish, the primary aquaculture species from the United States. In this study, we identified two distinct cDNAs encoding catfish IL-1 beta. Their encoding genes were identified, sequenced, and characterized. The catfish IL-1 beta genes were assigned to bacterial artificial chromosome (BAC) clones. Genomic studies indicated that the IL-1 beta genes were tandemly duplicated on the same chromosome. Phylogenetic analysis of various IL-1 beta genes indicated the possibility of recent species-specific gene duplications in channel catfish, and perhaps also in swine and carp. Expression analysis indicated that both IL-1 beta genes were expressed, but exhibited distinct expression profiles in various catfish tissues, and after bacterial infection with Edwardsiella ictaluri. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Antimicrobial peptides (AMPs) are important components of the host innate immune response against microbial invasion. In addition to the previously known four classes of antimicrobial peptides, a fifth class of antimicrobial peptides has been recently identified to include NK-lysins that have a globular three-dimensional structure and are larger with 74-78 amino acid residues. NK-lysin has been shown to harbor antimicrobial activities against a wide spectrum of microorganisms including bacteria, fungi, protozoa, and parasites. To date, NK-lysin genes have been reported from only a limited number of organisms. We previously identified a NK-lysin cDNA in channel catfish. Here we report the identification of two noveltypes of NK-lysin transcripts in channel catfish. Altogether, three distinct NK-lysin transcripts exist in channel catfish. In this work, their encoding genes were identified, sequenced, and characterized. We provide strong evidence that the catfish NK-lysin gene is tripled in the same genomic neighborhood. All three catfish NK-lysin genes are present in the same genomic region and are tightly linked on the same chromosome, as the same BAC clones harbor all three copies of the NK-lysin genes. All three NK-lysin genes are expressed, but exhibit distinct expression profiles in various tissues. In spite of the existence of a single copy of NK-lysin gene in the human genome, and only a single hit from the pufferfish,genome, there are two tripled clusters of NK-lysin genes on chromosome 17 of zebrafish in addition to one more copy on its chromosome 5. The similarity in the genomic arrangement of the tripled NK-lysin genes in channel catfish and zebrafish suggest similar evolution of NK-lysin genes. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Several studies have suggested that Otu domain had de-ubiquitinating activity and Tudor domain was important for the formation of germ cells. Here, we reported a novel zebrafish ovary-specific gene containing Otu and Tudor domain, z-otu, which was expressed at stages I-III oocytes and embryonic stages from zygotes to early blastula during embryonic cells maintained their totipotency. Therefore, z-otu might link the ubiquitin signaling pathway to early oogenesis and maintaining the totipotency of embryonic cell. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A goose-type lysozyme (g-lysozyme) gene has been cloned from the mandarin fish (Siniperca chuatsi), with its recombinant protein expressed in Escherichia coli. From the first transcription initiation site, the mandarin fish g-lysozyme gene extends 1307 nucleotides to the end of the 3' untranslated region, and it contains 5 exons and 4 introns. The open reading frame of the glysozyme transcript has 582 nucleotides which encode a 194 amino acid peptide. The 5' flanking region of mandarin fish glysozyme gene shows several common transcriptional factor binding sites when compared with that from Japanese flounder (Paralichthys olivaceus). The recombinant mandarin fish g-lysozyme was expressed in E. coli by using pET-32a vector, and the purified recombinant g-lysozyme shows lytic activity against Micrococcus lysodeikticus. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
The Gobioninae are a group of morphologically and ecologically diverse Eurasian freshwater cyprinid fishes. The intergeneric relationships of this group are unresolved and the possible monophyly of this subfamily remains to be established. We used complete mitochondrial cytochrome b gene sequences from most genera within the gobionine group, in addition to a selection of cyprinid outgroups, to investigate the possible monophyly of this group and resolve the interrelationships within the group. Our results support the monophyly of the Gobioninae and identify four monophyletic groups within the subfamily; the Hemibarbus group, the Sarcocheilichthys group, the Gobio group, and the Pseudogobio group. The morphologically aberrant genera Gobiobotia, Xenophysogobio and Gobiocypris are included in the Gobioninae, with the latter a sister group of Gnathopogon.
Resumo:
The chondroitin AC lyase gene, cslA, was cloned for the first time from the fish bacterial pathogen F. columnare G(4). From the first transcription initiation site, the cslA extends 2620 nucleotides to the end of the 3' region. The open reading frame of cslA transcript has 2286 nucleotides encoding 762 amino acids with a 16 residues long signal peptide at the N-terminus. The gene, cslA was then successfully expressed in Escherichia coli and recombinant chondroitin AC lyase, rChonAC was purified, with its lytic activity analyzed. Zymography analysis copolymerized with chondroitin sulphate revealed the lytic activity of rChonAC and also the crude native ChonAC isolated from periplamic space of cultured F. columnare G(4). The low level of lytic activity observed in crude native ChonAC may be due possibly to the low level of expression of this gene in the cultured condition. The expression and the role of this virulence factor is of interest for further research on the pathogenesis of F. columnare.
Resumo:
Intron loss and its evolutionary significance have been noted in Drosophila. The current study provides another example of intron loss within a single-copy Dfak gene in Drosophila. By using polymerase chain reaction (PCR), we amplified about 1.3 kb fragment spanning intron 5-10, located in the position of Tyr kinase (TyK) domain of Dfak gene from Drosophila melanogaster species group, and observed size difference among the amplified DNA fragments from different species. Further sequencing analysis revealed that D. melanogaster and D. simulans deleted an about 60 bp of DNA fragment relative to other 7 Drosophila species, such as D. elegans, D. ficusphila, D. biarmipes, D. takahashii, D. jambulina, D. prostipennis and D. pseudoobscura, and the deleted fragment located precisely in the position of one intron. The data suggested that intron loss might have occurred in the Dfak gene evolutionary process of D. melanogaster and D. simulans of Drosophila melanogaster species group. In addition, the constructed phylogenetic tree based on the Dfak TyK domains clearly revealed the evolutionary relationships between subgroups of Drosophila melanogaster species group, and the intron loss identified from D. melanogaster and D. simulans provides a unique diagnostic tool for taxonomic classification of the melanogaster subgroup from other group of genus Drosophila.
Resumo:
The Botiinae have traditionally represented a subfamily of the Cobitidae. At present, the classification and phylogenetic relationships of the Botiinae are controversial. To address systematic and phylogenetic questions concerning this group, we sequenced the complete cytochrome b gene from 34 samples, of which 24 represented 13 species of the East Asian botiine fishes, while the other 10 were non-botiine loach species. For the 1140 bp sequences determined, 494 sites were variable ones, of which 424 were parsimony informative. With Myxocyprinus asiaticus as an outgroup, molecular phylogenetic trees were constructed using the neighbor-joining, maximum parsimony, maximum likelihood and Bayesian methods. All molecular phylogenetic trees revealed that botiine fishes form a monophyletic group and are distantly related to other loaches, suggesting that the Botiinae should be placed in their own family. Within the Botiinae, there are three genera; Botia, Parabotia, and Leptobotia, each genus forming a monophyletic group, with the genus Botia as the most ancestral split. Our molecular results are in agreement with morphological analyses of botiines, suggesting that Botia is the ancestral genus, while Leptobotia and Parabotia were resolved as more derived sister groups.
Resumo:
We report the cloning of a novel antimicrobial peptide gene, termed rtCATH_1, found in the rainbow trout, Oncorhynchus mykiss. The predicted 216-residue rtCATH_1 prepropeptide consists of three domains: a 22-residue signal peptide, a 128-residue cathelin-like region containing two identifiable cathelicidin family signatures, and a predicted 66-residue C-terminal cationic antimicrobial peptide. This predicted mature peptide was unique in possessing features of different known (mammalian) cathelicidin subgroups, such as the cysteine-bridged family and the specific amino-acid-rich family. The rtCATH_1 gene comprises four exons, as seen in all known mammalian cathelicidin genes, and several transcription factor binding sites known to be of relevance to host defenses were identified in the 5' flanking region. By Northern blot analysis, the expression of rtCATH_1 was detected in gill, head kidney, and spleen of bacterially challenged fish. Primary cultures of head kidney leukocytes from rainbow trout stimulated with lipopolysaccharide or poly(I (.) C) also expressed riCATH_1. A 36-residue peptide corresponding to the core part of the fish cathelicidin was chemically synthesized and shown to exhibit potent antimicrobial activity and a low hemolytic effect. Thus, rtCATH_1 represents a novel antimicrobial peptide gene belonging to the cathelicidin family and may play an important role in the innate immunity of rainbow trout.
Resumo:
The mitochondrial 16S ribosomal RNA gene is sequenced from 24 ingroups taxa, including 18 species from Labeoninae grouped in 13 genera. Phylogenetic analyses are subjected to neighbor joining, maximum parsimony, maximum likelihood and Bayesian analyses. Phylogenetic analysis indicates that Labeoninae is basically a monophyletic assemblage and can be divided into 2 major clades: one comprising the genera Cirrhinus, Crossocheilus and Garra; and the other consisting of the genera Labeo, Sinilabeo, Osteochilus, Pseudoorossocheilus, Parasinilabeo. Ptychidio, Semilabeo, Pseudogyricheilus, Rectori and Discogobio. According to our present analysis, the features such as the presence of the adhesive disc on the chin and the pharyngeal teeth in 2 rows used in the traditional taxonomy of Labeoninae provide scarce information for phylogeny of labeonine fishes.
Resumo:
A tumor necrosis factor receptor-associated factor 2 binding protein (T2BP) gene was isolated from the grass carp (Ctenopharyngodon idellus) by utilizing suppression subtractive hybridization (SSH) and rapid amplification of cDNA ends (RACE). The grass carp T2BP (GT2BP) gene contains an open reading frame of 579 nucleotide(s) (nt), encoding 193 amino acids, with 23 nt 5'-untranslated region and a long 3'-untranslated region of 434 nt including poly (A), 1 AUUUA motif and 4 AUUUUA motifs. No signal peptide has been detected in the predicted GT2BP, but a characteristic forkhead associated domain is present. The GT2BP mRNA shares 83% identity with the zebrafish DNA sequence, and they both have no introns in the genomic DNA. The putative transcription factor binding sites of GT2BP include two C/EBP alpha binding sites, and one c-Jun binding, one AP-1 binding, and one nuclear factor kappa B (NF kappa B) binding sites. Southern blot analysis revealed that the GT2BP was a single-copy gene. Individual difference was observed in GT2BP expression in examined organs of healthy grass carp. However, the expression of GT2BP in all examined organs in a fish with the highest copepod infection level and the significantly higher expression level in spleen and liver in infected fish may indicate its up-regulation with the parasite infection. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The family Sisoridae is one of the largest and most diverse Asiatic catfish families, most species occurring in the water systems of the Qinhai-Tibetan Plateau and East Himalayas. To date published morphological and molecular phylogenetics hypotheses of sisorid catfishes are part congruent, and there are some areas of significant disagreement with respect to intergeneric relationships. We used mitochondrial cytochrome b and 16S rRNA gene sequences to clarify existing gaps in phylogenetics and to test conflicting vicariant and dispersal biogeographical hypotheses of Chinese sisorids using dispersal-vicariance analysis and weighted ancestral area analysis in combination with palaeogeographical data as well as molecular clock calibration. Our results suggest that: (1) Chinese sisorid catfishes form a monophyletic group with two distinct clades, one represented by (Gagata (Bagarius, Glyptothorax)) and the other by (glyptosternoids, Pseudecheneis); (2) the glyptosternoid is a monophyletic group and Glyptosternum, Glaridoglanis, and Exostoma are three basal species having a primitive position among it; (3) a hypothesis referring to Pseudecheneis as the sister group of the glyptosternoids, based on morphological evidence, is supported; (4) the genus Pareuchiloglanis, as presently defined, is not monophyletic; (5) congruent with previous hypotheses, the uplift of Qinghai-Tibetan Plateau played a primary role in the speciation and radiation of the Chinese sisorids; and (6) an evolutionary scenario combining aspects of both vicariance and dispersal theory is necessary to explain the distribution pattern of the glyptosternoids. In addition, using a cytochrome b substitution rate of 0.91% per million years and 0.23% for 16S rRNA, we tentatively date that the glyptosternoids most possibly originated in Oligocene-Miocene boundary (19-24Myr), and radiated from Miocene to Pleistocene, along with a center of origin in the Irrawaddy-Tsangpo drainages and several rapid speciation in a relatively short time. (c) 2005 Elsevier Inc. All rights reserved.