994 resultados para TEMPERATURE REQUIREMENT MODEL


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reconsiders the important question which came to light as a result of the controversial 2002 Coles Myer annual general meeting: do directors that are appointed as proxy have an obligation to vote as directed (and indeed should they)? A recent decision of the New South Wales Supreme Court, which was subsequently approved on appeal, stands for the proposition that proxy holders are agents of the shareholders that appointed them. However, currently the Corporations Act only requires a Chairman appointed as proxy to vote as directed — not an ordinary director. This article briefly explains the present state of the law in Australia on this issue, and then explores some interesting recent judicial remarks which may suggest that ordinary directors appointed as proxy must vote as directed in order to satisfy their director’s duties (both common law and statutory) to the company. We finally outline a proposed statutory reform initiative which seeks to remove the present uncertainty in the law by introducing a blanket requirement that all proxy holders must vote as directed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A semianalytical Sachs-type equation for the flow stress of magnesium-base alloys is developed using the Schmid law, power law hardening, and a sigmoidal increase in the twinning volume fraction with strain. Average Schmid factors were estimated from electron backscattered diffraction (EBSD) data. With these, the equation provides a reasonable description of the flow curves obtained in compression and tension for samples of Mg-3Al-1Zn cut in different orientations from rolled plate. The model illustrates the general importance of basal slip and twinning in magnesium alloys. The significance of prismatic slip in room temperature tension testing is also highlighted. This is supported with EBSD slip line trace analysis and rationalized in terms of a possible sensitivity of the critical resolved shear stress for prismatic (cross) slip to the stress on the basal plane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most of the current web-based database systems suffer from poor performance, complicated heterogeneity, and synchronization issues. In this paper, we propose a novel mechanism for web-based database system on multicast and anycast protocols to deal with these issues. In the model, we put a castway, a network interface for database server, between database server and Web server. Castway deals with the multicast and anycast requests and responses. We propose a requirement-based server selection algorithm and an atomic multicast update algorithm for data queries and synchronizations. The model is independent from the Internet environment, it can synchronise the databases efficiently and automatically. Furthermore, the model can reduce the possibility of transaction deadlocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A practical experiment is described which was used to help university students increase their understanding of the effect of construction methods and window design on passive solar heating and electrical heating. A number of one tenth scale model rooms were constructed by students and sited out-of-doors in the late autumn. The models were fabricated to mimic available commercial construction techniques with careful consideration being given to window size and placement for solar access. Each model had a thermostatically controlled electric heating element. The temperatures and electricity use of the models were recorded using data-loggers over a two week period. The performances of the models based on energy consumption and internal temperature were compared with each other and with predictions based upon thermal mass and R-values. Examples of questions used by students to facilitate this process are included. The effect of scaling on thermal properties was analysed using Buckingham’s p-theorem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a novel model for web-based database systems based on the multicast and anycast' protocols. In the model, we design a middleware, castway, which locates between the database server and the Web server. Every castway in a distributed system operates as a multicast node and an anycast node independently, respectively. The proposed mechanism can balance the workload among the distributed database servers, and offers the "best" server to serve for a query. Three algorithms are employed for the model: the requirement-based probing algorithm for anycast routing, the atomic multicast update algorithm for database synchronization, and the job deviation algorithm for system workload balance. The simulations and experiments show that the proposed model works very well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model has been developed which describes the hot deformation and recrystallization behavior of austenite using a single internal variable: dislocation density. The dislocation density is incorporated into equations describing the rate of recovery and recrystallization. In each case no distinction is made between static and dynamic events, and the model is able to simulate multideformation processes. The model is statistically based and tracks individual populations of the dislocation density during the work-hardening and softening phases. After tuning using available data the model gave an accurate prediction of the stress–strain behavior and the static recrystallization kinetics for C–Mn steels. The model correctly predicted the sensitivity of the post deformation recrystallization behavior to process variables such as strain, strain rate and temperature, even though data for this were not explicitly incorporated in the tuning data set. In particular, the post dynamic recrystallization (generally termed metadynamic recrystallization) was shown to be largely independent of strain and temperature, but a strong function of strain rate, as observed in published experimental work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

‘The Melbourne Model’ is a new approach to university curriculum that has been adopted recently by the University of Melbourne, Australia. It incorporates elements of the 3+2+3 or three cycle structure identified in the Bologna Process, and of the objectives of ‘liberal education’ evident in undergraduate education in North America. The Melbourne curriculum model is internationally aligned, while simultaneously responsive to the particular context of Australian higher education policy. The new curriculum also incorporates interdisciplinarity of several variants in order that all students are exposed to and learn about alternative knowledge domains, methods of investigation and enquiry, and different ways of knowing. Interdisciplinary study in the Melbourne Model is ensured through a requirement that students study one quarter of their subjects outside their core curriculum, a requirement known as ‘breadth’. This paper examines two aspects of the Melbourne Model curriculum: its international nature and interdisciplinary character.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents an integrated model for computing the thermo-mechanical parameters (cross-sectional shape of workpiece, the pass-by-pass strain and strain rate and the temperature variation during rolling and cooling between inter-stands) and metallurgical parameters (recrystallisation behaviour and austenite grain size—AGS), to assess the potential for developing “Thermo-Mechanical Controlled Process” technology in rod (or bar) rolling, which has been a well-known technical terminology in strip (or plate) rolling since 1970s.

The advantage of this model is that metallurgical and mechanical parameters are obtained simultaneously in a short computation time compared with other models. The model has been applied to a rod mill to predict the exit cross-sectional shape, area and AGS per pass by incorporating the equations for AGS evolution being used in strip rolling. At the finishing train of rod mills, the strain rates reach as high as 1000–3000 s−1 and the inter-pass times are around 10–60 ms.

The results show that the proposed model is an efficient tool for evaluating the effects of process-related parameters on product quality and dimensional tolerance of the products in rod (or bar) rolling. The results of the simulation demonstrated that the equation for AGS evolution being used in strip rolling might have limitations when applied directly to rod rolling at a high strain rate.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis provides a unified and comprehensive treatment of the fuzzy neural networks as the intelligent controllers. This work has been motivated by a need to develop the solid control methodologies capable of coping with the complexity, the nonlinearity, the interactions, and the time variance of the processes under control. In addition, the dynamic behavior of such processes is strongly influenced by the disturbances and the noise, and such processes are characterized by a large degree of uncertainty. Therefore, it is important to integrate an intelligent component to increase the control system ability to extract the functional relationships from the process and to change such relationships to improve the control precision, that is, to display the learning and the reasoning abilities. The objective of this thesis was to develop a self-organizing learning controller for above processes by using a combination of the fuzzy logic and the neural networks. An on-line, direct fuzzy neural controller using the process input-output measurement data and the reference model with both structural and parameter tuning has been developed to fulfill the above objective. A number of practical issues were considered. This includes the dynamic construction of the controller in order to alleviate the bias/variance dilemma, the universal approximation property, and the requirements of the locality and the linearity in the parameters. Several important issues in the intelligent control were also considered such as the overall control scheme, the requirement of the persistency of excitation and the bounded learning rates of the controller for the overall closed loop stability. Other important issues considered in this thesis include the dependence of the generalization ability and the optimization methods on the data distribution, and the requirements for the on-line learning and the feedback structure of the controller. Fuzzy inference specific issues such as the influence of the choice of the defuzzification method, T-norm operator and the membership function on the overall performance of the controller were also discussed. In addition, the e-completeness requirement and the use of the fuzzy similarity measure were also investigated. Main emphasis of the thesis has been on the applications to the real-world problems such as the industrial process control. The applicability of the proposed method has been demonstrated through the empirical studies on several real-world control problems of industrial complexity. This includes the temperature and the number-average molecular weight control in the continuous stirred tank polymerization reactor, and the torsional vibration, the eccentricity, the hardness and the thickness control in the cold rolling mills. Compared to the traditional linear controllers and the dynamically constructed neural network, the proposed fuzzy neural controller shows the highest promise as an effective approach to such nonlinear multi-variable control problems with the strong influence of the disturbances and the noise on the dynamic process behavior. In addition, the applicability of the proposed method beyond the strictly control area has also been investigated, in particular to the data mining and the knowledge elicitation. When compared to the decision tree method and the pruned neural network method for the data mining, the proposed fuzzy neural network is able to achieve a comparable accuracy with a more compact set of rules. In addition, the performance of the proposed fuzzy neural network is much better for the classes with the low occurrences in the data set compared to the decision tree method. Thus, the proposed fuzzy neural network may be very useful in situations where the important information is contained in a small fraction of the available data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during hot deformation of metallic materials requires knowledge of the grain/subgrain structure and crystallographic texture characteristics over a range of processing conditions. A Fe-30wt%Ni based alloy, retaining a stable austenitic structure at room temperature, was used for modelling the development of austenite microstructure during hot deformation of conventional carbon-manganese steels. A series of plane strain compression tests was carried out at a temperature of 950 °C and strain rates of 10 s-1 and 0.1 s-1 to several strain levels. Evolution of the grain/subgrain structure and crystallographic texture was characterised in detail using quantitative light microscopy and highresolution electron backscatter diffraction. Crystallographic texture characteristics were determined separately for the observed deformed and recrystallised grains. The subgrain geometry and dimensions together with the misorientation vectors across sub-boundaries were quantified in detail across large sample areas and the orientation dependence of these characteristics was determined. Formation mechanisms of the recrystallised grains were established in relation to the deformation microstructure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present investigation was to determine the orientation dependence of substructure characteristics in an austenitic Fe−30wt%Ni model alloy subjected to hot plane strain compression. Deformation was carried out at a temperature of 950 °C using a strain rate of 10 s−1 to equivalent strain levels of approximately 0.2, 0.4, 0.6 and 0.8. The specimens obtained were analysed using a fully automatic electron backscatter diffraction technique. The crystallographic texture was characterized for all the strain levels studied and the subgrain structure was quantified in detail at a strain of 0.4. The substructure characteristics displayed pronounced orientation dependence. The major texture components, namely the copper, S, brass, Goss and rotated Goss, generally contained one or two prominent families of parallel larger-angle extended subboundaries, the traces of which on the longitudinal viewing plane appeared systematically aligned along the {111} slip plane traces, bounding long microbands subdivided into slightly elongated subgrains by short lower-angle transverse subboundaries. Relatively rare cube-orientated grains displayed pronounced subdivision into coarse deformation bands containing large, low-misorientated subgrains. The misorientation vectors across subboundaries largely showed a tendency to cluster around the sample transverse direction. Apart from the rotated Goss texture component, the stored energy levels for the remaining components were principally consistent with the corresponding Taylor factor values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

N,N,N,N-Tetramethylammonium dicyanamide (Me4NDCA) has been examined via differential scanning calorimetry (DSC), thermogravimetric analysis, conductivity, single crystal X-ray diffraction and 1H nuclear magnetic resonance (NMR) analyses, and was found to be highly conductive in the solid state (σ =10−3 S cm−2 at 420 K) and to also exhibit unusual plastic crystal behaviour. To investigate the correlation between such behaviour and the occurrence of molecular rotations in the crystal, 1H NMR second moment measurements are compared with calculated values predicted from the crystal structure. While DSC analysis indicates a number of solid–solid transitions at ambient temperatures, subsequent 1H NMR analysis of the Me4N+ cation shows that a variety of rotational motions become active at low (<240 K) temperatures, and that such transitions in rotational states occur over a range of temperatures rather than in a sharp transition. Conductivity analysis reveals that between 320 K and 420 K the conductivity increases by more than six orders of magnitude in the solid state, in line with the transition of the Me4N+ cation to a diffusive state, and that other phase transitions observed in this temperature range have no marked effect on the conductivity. Conduction in this solid state is therefore envisaged to involve a vacancy-diffusion model, involving Me4N+ cation vacancies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Decisions taken during migration can have a large effect on the fitness of birds. Migration must be accurately timed with food availability to allow efficient fueling but is also constrained by the optimal arrival date at the breeding site. The decision of when to leave a site can be driven by energetics (sufficient body stores to fuel flight), time-related cues (internal clock under photoperiodic control), or external cues (temperature, food resources). An individual based model (IBM) that allows a mechanistic description of a range of departure decision rules was applied to the spring migration of pink-footed geese (Anser brachyrhynchus) from wintering grounds in Denmark to breeding grounds on Svalbard via 2 Norwegian staging sites. By comparing predicted with observed departure dates, we tested 7 decision rules. The most accurate predictions were obtained from a decision rule based on a combination of cues including the amount of body stores, date, and plant phenology. Decision rules changed over the course of migration with the external cue decreasing in importance and the time-related cue increasing in importance for sites closer to breeding grounds. These results are in accordance with descriptions of goose migration, following the “green-wave”: Geese track the onset of plant growth as it moves northward in spring, with an uncoupling toward the end of the migration if time is running out. We demonstrate the potential of IBMs to study the possible mechanisms underlying stopover ecology in migratory birds and to serve as tools to predict consequences of environmental change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of physically-based models of microstructural evolution during thermomechanical processing of metallic materials requires knowledge of the internal state variable data, such as microstructure, texture, and dislocation substructure characteristics, over a range of processing conditions. This is a particular problem for steels, where transformation of the austenite to a variety of transformation products eradicates the hot deformed microstructure. This article reports on a model Fe-30wt% Ni-based alloy, which retains a stable austenitic structure at room temperature, and has, therefore, been used to model the development of austenite microstructure during hot deformation of conventional low carbon-manganese steels. It also provides an excellent model alloy system for microalloy additions. Evolution of the microstructure and crystallographic texture was characterized in detail using optical microscopy, X-ray diffraction (XRD), SEM, EBSD, and TEM. The dislocation substructure has been quantified as a function of crystallographic texture component for a variety of deformation conditions for the Fe-30% Ni-based alloy. An extension to this study, as the use of a microalloyed Fe-30% Ni-Nb alloy in which the strain induced precipitation mechanism was studied directly. The work has shown that precipitation can occur at a much finer scale and higher number density than hitherto considered, but that pipe diffusion leads to rapid coarsening. The implications of this for model development are discussed.