6 resultados para TEMPERATURE REQUIREMENT MODEL

em CaltechTHESIS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Part I

Present experimental data on nucleon-antinucleon scattering allow a study of the possibility of a phase transition in a nucleon-antinucleon gas at high temperature. Estimates can be made of the general behavior of the elastic phase shifts without resorting to theoretical derivation. A phase transition which separates nucleons from antinucleons is found at about 280 MeV in the approximation of the second virial coefficient to the free energy of the gas.

Part II

The parton model is used to derive scaling laws for the hadrons observed in deep inelastic electron-nucleon scattering which lie in the fragmentation region of the virtual photon. Scaling relations are obtained in the Bjorken and Regge regions. It is proposed that the distribution functions become independent of both q2 and ν where the Bjorken and Regge regions overlap. The quark density functions are discussed in the limit x→1 for the nucleon octet and the pseudoscalar mesons. Under certain plausible assumptions it is found that only one or two quarks of the six types of quarks and antiquarks have an appreciable density function in the limit x→1. This has implications for the quark fragmentation functions near the large momentum boundary of their fragmentation region. These results are used to propose a method of measuring the proton and neutron quark density functions for all x by making measurements on inclusively produced hadrons in electroproduction only. Implications are also discussed for the hadrons produced in electron-positron annihilation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two of the most important questions in mantle dynamics are investigated in three separate studies: the influence of phase transitions (studies 1 and 2), and the influence of temperature-dependent viscosity (study 3).

(1) Numerical modeling of mantle convection in a three-dimensional spherical shell incorporating the two major mantle phase transitions reveals an inherently three-dimensional flow pattern characterized by accumulation of cold downwellings above the 670 km discontinuity, and cylindrical 'avalanches' of upper mantle material into the lower mantle. The exothermic phase transition at 400 km depth reduces the degree of layering. A region of strongly-depressed temperature occurs at the base of the mantle. The temperature field is strongly modulated by this partial layering, both locally and in globally-averaged diagnostics. Flow penetration is strongly wavelength-dependent, with easy penetration at long wavelengths but strong inhibition at short wavelengths. The amplitude of the geoid is not significantly affected.

(2) Using a simple criterion for the deflection of an upwelling or downwelling by an endothermic phase transition, the scaling of the critical phase buoyancy parameter with the important lengthscales is obtained. The derived trends match those observed in numerical simulations, i.e., deflection is enhanced by (a) shorter wavelengths, (b) narrower up/downwellings (c) internal heating and (d) narrower phase loops.

(3) A systematic investigation into the effects of temperature-dependent viscosity on mantle convection has been performed in three-dimensional Cartesian geometry, with a factor of 1000-2500 viscosity variation, and Rayleigh numbers of 10^5-10^7. Enormous differences in model behavior are found, depending on the details of rheology, heating mode, compressibility and boundary conditions. Stress-free boundaries, compressibility, and temperature-dependent viscosity all favor long-wavelength flows, even in internally heated cases. However, small cells are obtained with some parameter combinations. Downwelling plumes and upwelling sheets are possible when viscosity is dependent solely on temperature. Viscous dissipation becomes important with temperature-dependent viscosity.

The sensitivity of mantle flow and structure to these various complexities illustrates the importance of performing mantle convection calculations with rheological and thermodynamic properties matching as closely as possible those of the Earth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural waters may be chemically studied as mixed electrolyte solutions. Some important equilibrium properties of natural waters are intimately related to the activity-concentration ratios (i.e., activity coefficients) of the ions in solution. An Ion Interaction Model, which is based on Pitzer's (1973) thermodynamic model, is proposed in this dissertation. The proposed model is capable of describing the activity coefficient of ions in mixed electrolyte solutions. The effects of temperature on the equilibrium conditions of natural waters and on the activity coefficients of the ions in solution, may be predicted by means of the Ion Interaction Model presented in this work.

The bicarbonate ion, HCO3-, is commonly found in natural waters. This anion plays an important role in the chemical and thermodynamic properties of water bodies. Such properties are usually directly related to the activity coefficient of HCO3- in solution. The Ion Interaction Model, as proposed in this dissertation, is used to describe indirectly measured activity coefficients of HCO3- in mixed electrolyte solutions.

Experimental pH measurements of MCl-MHCO3 and MCl-H2CO3 solutions at 25°C (where M = K+, Na+, NH4+, Ca2+ or Mg2+) are used in this dissertation to evaluate indirectly the MHCO3 virial coefficients. Such coefficients permit the prediction of the activity coefficient of HCO3- in mixed electrolyte solutions. The Ion Interaction Model is found to be an accurate method for predicting the activity coefficient of HCO3- within the experimental ionic strengths (0.2 to 3.0 m). The virial coefficients of KHCO3 and NaHCO3 and their respective temperature variations are obtained from similar experimental measurements at 10° and 40°C. The temperature effects on the NH4HCO3, Ca(HCO3)2, and Mg(HCO3)2 virial coefficients are estimated based on these results and the temperature variations of the virial coefficients of 40 other electrolytes.

Finally, the Ion Interaction Model is utilized to solve various problems of water chemistry where bicarbonate is present in solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Part I:

The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.

Part II.

The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been well-established that interfaces in crystalline materials are key players in the mechanics of a variety of mesoscopic processes such as solidification, recrystallization, grain boundary migration, and severe plastic deformation. In particular, interfaces with complex morphologies have been observed to play a crucial role in many micromechanical phenomena such as grain boundary migration, stability, and twinning. Interfaces are a unique type of material defect in that they demonstrate a breadth of behavior and characteristics eluding simplified descriptions. Indeed, modeling the complex and diverse behavior of interfaces is still an active area of research, and to the author's knowledge there are as yet no predictive models for the energy and morphology of interfaces with arbitrary character. The aim of this thesis is to develop a novel model for interface energy and morphology that i) provides accurate results (especially regarding "energy cusp" locations) for interfaces with arbitrary character, ii) depends on a small set of material parameters, and iii) is fast enough to incorporate into large scale simulations.

In the first half of the work, a model for planar, immiscible grain boundary is formulated. By building on the assumption that anisotropic grain boundary energetics are dominated by geometry and crystallography, a construction on lattice density functions (referred to as "covariance") is introduced that provides a geometric measure of the order of an interface. Covariance forms the basis for a fully general model of the energy of a planar interface, and it is demonstrated by comparison with a wide selection of molecular dynamics energy data for FCC and BCC tilt and twist boundaries that the model accurately reproduces the energy landscape using only three material parameters. It is observed that the planar constraint on the model is, in some cases, over-restrictive; this motivates an extension of the model.

In the second half of the work, the theory of faceting in interfaces is developed and applied to the planar interface model for grain boundaries. Building on previous work in mathematics and materials science, an algorithm is formulated that returns the minimal possible energy attainable by relaxation and the corresponding relaxed morphology for a given planar energy model. It is shown that the relaxation significantly improves the energy results of the planar covariance model for FCC and BCC tilt and twist boundaries. The ability of the model to accurately predict faceting patterns is demonstrated by comparison to molecular dynamics energy data and experimental morphological observation for asymmetric tilt grain boundaries. It is also demonstrated that by varying the temperature in the planar covariance model, it is possible to reproduce a priori the experimentally observed effects of temperature on facet formation.

Finally, the range and scope of the covariance and relaxation models, having been demonstrated by means of extensive MD and experimental comparison, future applications and implementations of the model are explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of meso-phenyloctamethylporphyrins covalently bonded at the 4'phenyl position to quinones via rigid bicyclo[2.2.2]octane spacers were synthesized for the study of the dependence of electron transfer reaction rate on solvent, distance, temperature, and energy gap. A general and convergent synthesis was developed based on the condensation of ac-biladienes with masked quinonespacer-benzaldehydes. From picosecond fluorescence spectroscopy emission lifetimes were measured in seven solvents of varying polarity. Rate constants were determined to vary from 5.0x109sec-1 in N,N-dimethylformamide to 1.15x1010 Sec-1 in benzene, and were observed to rise at most by about a factor of three with decreasing solvent polarity. Experiments at low temperature in 2-MTHF glass (77K) revealed fast, nearly temperature-independent electron transfer characterized by non-exponential fluorescence decays, in contrast to monophasic behavior in fluid solution at 298K. This example evidently represents the first photosynthetic model system not based on proteins to display nearly temperature-independent electron transfer at high temperatures (nuclear tunneling). Low temperatures appear to freeze out the rotational motion of the chromophores, and the observed nonexponential fluorescence decays may be explained as a result of electron transfer from an ensemble of rotational conformations. The nonexponentiality demonstrates the sensitivity of the electron transfer rate to the precise magnitude of the electronic matrix element, which supports the expectation that electron transfer is nonadiabatic in this system. The addition of a second bicyclooctane moiety (15 Å vs. 18 Å edge-to-edge between porphyrin and quinone) reduces the transfer rate by at least a factor of 500-1500. Porphyrinquinones with variously substituted quinones allowed an examination of the dependence of the electron transfer rate constant κET on reaction driving force. The classical trend of increasing rate versus increasing exothermicity occurs from 0.7 eV≤ |ΔG0'(R)| ≤ 1.0 eV until a maximum is reached (κET = 3 x 108 sec-1 rising to 1.15 x 1010 sec-1 in acetonitrile). The rate remains insensitive to ΔG0 for ~ 300 mV from 1.0 eV≤ |ΔG0’(R)| ≤ 1.3 eV, and then slightly decreases in the most exothermic case studied (cyanoquinone, κET = 5 x 109 sec-1).