998 resultados para Superconducting Copper Oxides
Resumo:
In this paper we report about the electrical properties of La 0.7Ca0.3MnO3 compounds substituted by copper on the manganese site and/or deliberately contaminated by SiO2 in the reactant mixture. Several phenomena have been observed and discussed. SiO2 addition leads to the formation of an apatite-like secondary phase that affects the electrical conduction through the percolation of the charge carriers. On the other hand, depending on the relative amounts of copper and silicon, the temperature dependence of the electrical resistivity can be noticeably modified: our results enable us to compare the effects of crystallographic vacancies on the A and B sites of the perovskite with the influence of the copper ions substituted on the manganese site. The most original result occurs for the compounds with a small ratio Si/Cu, which display double-peaked resistivity vs. temperature curves. © 2003 Elsevier B.V. All rights reserved.
Resumo:
The extreme sensitivity of Sm/Ba at high temperature in air becomes an obstacle to the fabrication of SmBCO single grains that exhibit stable and reliable superconducting properties. In this research, the superconducting properties of SmBCO single grains fabricated by top seeded melt growth (TSMG) from different batches of commercial SmBa2Cu3O 7-d (Sm-123) precursor powder using different processing atmospheres (air and 0.1% O2 in Ar), different processing methods (isothermal growth and continuous cooling) and different amounts of BaO2 content to suppress Sm/Ba substitution in air have been investigated in an attempt to understand fully the TSMG process for this system. As a result, based on extensive data, a novel and simple, low temperature post-annealing approach is proposed specifically to overcome the sensitivity of Tc to Sm/Ba substitution in order to simplify the fabrication of SmBCO and to increase its reliability with a view to the practical processing of these materials. Initial processing trials have been performed successfully to demonstrate the viability of the novel post-annealing process. © 2013 IOP Publishing Ltd.
Resumo:
Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.
Resumo:
In this paper, the authors investigate a number of design and market considerations for an axial flux superconducting electric machine design that uses high temperature superconductors. The axial flux machine design is assumed to utilise high temperature superconductors in both wire (stator winding) and bulk (rotor field) forms, to operate over a temperature range of 65-77 K, and to have a power output in the range from 10s of kW up to 1 MW (typical for axial flux machines), with approximately 2-3 T as the peak trapped field in the bulk superconductors. The authors firstly investigate the applicability of this type of machine as a generator in small- and medium-sized wind turbines, including the current and forecasted market and pricing for conventional turbines. Next, a study is also carried out on the machine's applicability as an in-wheel hub motor for electric vehicles. Some recommendations for future applications are made based on the outcome of these two studies. Finally, the cost of YBCO-based superconducting (2G HTS) wire is analysed with respect to competing wire technologies and compared with current conventional material costs and current wire costs for both 1G and 2G HTS are still too great to be economically feasible for such superconducting devices.
Resumo:
© 2013 IEEE. The world's first bulk-type fully high temperature superconducting synchronous motor (HTS-SM) was assembled and tested in our laboratory at the University of Cambridge. The fully HTS-SM was designed with 75 Y123 HTS bulks mounted on the surface of the rotor and six air core 2G HTS racetrack coils used for stator windings. We successfully applied a light fan load test for this fully HTS-SM at its operating temperature of 77 K. The detected decay of the trapped magnetic flux densities at the centre of the HTS bulks was up to 16.5% after 5 h of synchronous rotation. Due to the high current density of the HTS material, the ac stator field for the 2G HTS winding was 49.2% stronger compared with a comparable copper winding. In the meantime, we estimated that the efficiency was about 86% potentially under stable low frequency rotation at 150 r/min. The results show that the performance of this HTS motor is acceptable for practical applications.
Resumo:
To elucidate the role of phenotype in stress-tolerant bloom-forming cyanobacterium Microcystis, two phenotypes of M. aeruginosa-unicellular and colonial strains were selected to investigate how they responded to copper stress. Flow cytometry (FCM) examination indicated that the percents of viable cells in unicellular and colonial Microcystis were 1.92-2.83% and 72.3-97.51%, respectively, under 0.25 mg l(-1) copper sulfate treatment for 24 h. Upon exposure to 0.25 mg l(-1) copper sulfate, the activities of antioxidative enzyme, such as superoxide dismutase (SOD) and catalase (CAT), were significantly increased in colonial Microcystis compared to unicellular Microcystis. Meanwhile, the values of the photosynthetic parameters (F-v/F-m, ETRmax and oxygen evolution rate) decreased more rapidly in unicellular Microcystis than in colonial Microcystis. The results indicate that colonial Microcystis has a higher endurance to copper than unicellular Microcystis. This suggests that the efficient treatment concentration of copper sulfate as algaecides will be dependent on the phenotypes of Microcystis. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The theory of doping limits in semiconductors and insulators is applied to the case of wide gap oxides, crystalline, or amorphous, and used to explain that impurities do not in general give rise to gap states or a doping response. Instead, the system tends to form defect complexes or undergo symmetry-lowering reconstructions to expel gap states out of the band gap. The model is applied to impurities, such as trivalent metals, carbon, N, P, and B, in HfO2, the main gate dielectric used in field effect transistors. © 2014 AIP Publishing LLC.
Resumo:
A copper/zinc superoxide dismutase (Cu/ZnSOD) gene and a manganese superoxide dismutase (MnSOD) gene of the human parasite Clonorchis sinensis have been cloned and their gene products functionally characterized. Genes Cu/ZnSOD and MnSOD encode proteins of 16 kDa and 25.4 kDa, respectively. The deduced amino acid sequences of the two genes contained highly conserved residues required for activity and secondary structure formation of Cu/ZnSOD and MnSOD, respectively, and show up to 73.7% and 75.4% identities with their counterparts in other animals. The genomic DNA sequence analysis of Cu/ZnSOD gene revealed this as an intronless gene. Inhibitor studies with purified recombinant Cu/ ZnSOD and MnSOD, both of which were functionally expressed in Escherichia coli, confirmed that they are copper/zinc and manganese-containing SOD, respectively. Immunoblots showed that both C. sinensis Cu/ZnSOD and MnSOD should be antigenic for humans, and both, especially the C. sinensis MnSOD, exhibit extensive cross-reactions with sera of patients infected by other trematodes or cestodes. RT-PCR and SOD activity staining of parasite lysates indicate that there are no significant differences in mRNA level or SOD activity for both species of SOD, indicating cytosolic Cu/ZnSOD and MnSOD might play a comparatively important role in the C. sinensis antioxidant system.
Resumo:
Experimental sediments and water from shallow, eutrophic Dianchi Lakes were treated in a controlled laboratory microcosm using different chemicals under different anoxic levels. This study revealed that the polyaluminum chloride (PAC) was able to inhibit the phosphorus release and decrease the UV254 value at any anoxic level. When the DO concentrations were between 0.76-0.95 mg(.) L-1, the UV(254)value, total phosphorus (TP), and total dissolved phosphorus (TDP) in the water column were decreased by 71.93%, 87.12% and 64.24% respectively. The UV254, TP, and TDP were also decreased by 72.94%, 70.87% and 50.76% respectively at the levels of 4.56-5.32mg(.)L(-1) of DO concentrations. The treatment effects of TP and TDP in the water column using copper sulfate however were not as efficient as the PAC treatment. The UV254 value was increased with the addition of copper sulfate at every anoxic level tested but the chlorophyll-a (Chl-a) content was decreased rapidly and efficiently by copper sulfate more than the treatment by PAC. When the DO concentrations were 0.76-0.86mg(.)L(-1) and 4.75-5.14mg(.)L(-1), the Chl-a concentrations were decreased by 84.87% and 75.07% respectively through copper sulfate treatment. With additions of PAC and copper sulfate, the phosphorus fractions in sediments were shifted forward to the favorable shapes that have little ability of release. The TP concentrations in sediments were increased after treatment via PAC and copper sulfate. Under anoxic conditions, most of the BD-P (Fe-P) to NaOH-P (Al-P) was converted using the recommended PAC dose in BD-P rich sediment. Similar to the PAC, the copper sulfate also could flocculate the exchange phosphorus from sediment to overlying water. Overall though, the effects of copper sulfate treatment were not better than that of the PAC.
Resumo:
This paper studies the electronic structure and native defects intransparent conducting oxides CuScO2 and CuYO2 using the first-principle calculations. Some typical native copper-related and oxygen-related defects, such as vacancy, interstitials, and antisites in their relevant charge state are considered. The results of calculation show that, CuMO2 (M = Sc, Y) is impossible to shown-type conductivity ability. It finds that copper vacancy and oxygen interstitial have relatively low formation energy and they are the relevant defects in CuScO2 and CuYO2. Copper vacancy is the most efficient acceptor, and under O-rich condition oxygen antisite also becomes important acceptor and plays an important role in p-type conductivity.
Resumo:
Using first-principles methods we have calculated electronic structures, optical properties, and hole conductivities of CuXO2 (X=Y, Sc, and Al). We show that the direct optical band gaps of CuYO2 and CuScO2 are approximately equal to their fundamental band gaps and the conduction bands of them are localized. The direct optical band gaps of CuXO2 (X=Y, Sc, and Al) are 3.3, 3.6, and 3.2 eV, respectively, which are consistent with experimental values of 3.5, 3.7, and 3.5 eV. We find that the hole mobility along long lattice c is higher than that along other directions through calculating effective masses of the three oxides. By analyzing band offset we find that CuScO2 has the highest valence band maximum (VBM) among CuXO2 (X=Y, Sc, and Al). In addition, the approximate transitivity of band offset suggests that CuScO2 has a higher VBM than CuGaO2 and CuInO2 [Phys. Rev. Lett. 88, 066405 (2002)]. We conclude that CuScO2 has a higher p-type doping ability in terms of the doping limit rule. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2991157]
Resumo:
Using the first-principles methods, we study the electronic structure, intrinsic and extrinsic defects doping in transparent conducting oxides CuGaO2. Intrinsic defects, acceptor-type and donor-type extrinsic defects in their relevant charge state are considered. The calculation result show that copper vacancy and oxygen interstitial are the relevant defects in CuGaO2. In addition, copper vacancy is the most efficient acceptor. Substituting Be for Ga is the prominent acceptor, and substituting Ca for Cu is the prominent donors in CuGaO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials in CuGaO2.
Resumo:
Enhanced near-infrared photoluminescence (PL) from sulfur-related isoelectronic luminescent centers in silicon was observed from thermally quenched sulfur-implanted silicon in which additional copper or silver ions had been coimplanted. The PL from the sulfur and copper coimplanted silicon peaked between 70 and 100 K and persisted to 260 K. This result strongly supports the original conjecture from the optical detection of magnetic resonance studies that the strong PL from sulfur-doped silicon comes from S-Cu isoelectronic complexes [Frens , Phys. Rev. B 46, 12316 (1992); Mason , ibid. 58, 7007 (1998).]. (c) 2007 American Institute of Physics.