978 resultados para Shoot


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altas produtividades de soja requerem grandes quantidades de nitrogênio, que podem ser obtidas principalmente, a partir da fixação simbiótica. No entanto, há possibilidade da eficiência desse processo biológico ser prejudicada pela deficiência de micronutrientes, especialmente de cobalto e molibdênio. Nesse contexto, objetivou-se com o presente trabalho avaliar a eficiência agronômica e a forma de aplicação de adubação mineral com cobalto e molibdênio na cultura da soja. Para tanto, a cultivar CD-206 foi submetida a diferentes tratamentos que consistiram da combinação entre aplicação de Co e Mo via tratamento de sementes e adubação foliar. As características agronômicas avaliadas foram o número de nódulos, massa seca da parte aérea, massa seca de raiz, número de vagens, número de grãos, massa de mil grãos e produção de grãos. A aplicação de molibdênio e cobalto via sementes e/ ou adubação foliar no estádio V4 (terceira folha trifoliolada completamente desenvolvida, quarto nó) promoveram incrementos significativos no rendimento da cultura. Respostas positivas ao cobalto e molibdênio também foram observadas no número de nódulos, vagens e grãos, com aumentos de até 240 kg ha-1 no rendimento da cultura. Os parâmetros agronômicos avaliados foram afetados positivamente pela aplicação de Co e Mo, principalmente quanto aplicado tanto via semente como foliar (TS + V4), inclusive para a produtividade de grãos. A forma de aplicação não foi significativamente distinta, ou seja, tanto a aplicação via semente como via foliar foram eficientes no fornecimento destes nutrientes para a cultura da soja.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In savannah and tropical grasslands, which account for 60% of grasslands worldwide, a large share of ecosystem carbon is located below ground due to high root:shoot ratios. Temporal variations in soil CO2 efflux (R-S) were investigated in a grassland of coastal Congo over two years. The objectives were (1) to identify the main factors controlling seasonal variations in R-S and (2) to develop a semi-empirical model describing R-S and including a heterotrophic component (R-H) and an autotrophic component (R-A). Plant above-ground activity was found to exert strong control over soil respiration since 71% of seasonal R-S variability was explained by the quantity of photosynthetically active radiation absorbed (APAR) by the grass canopy. We tested an additive model including a parameter enabling R-S partitioning into R-A and R-H. Assumptions underlying this model were that R-A mainly depended on the amount of photosynthates allocated below ground and that microbial and root activity was mostly controlled by soil temperature and soil moisture. The model provided a reasonably good prediction of seasonal variations in R-S (R-2 = 0.85) which varied between 5.4 mu mol m(-2) s(-1) in the wet season and 0.9 mu mol m(-2) s(-1) at the end of the dry season. The model was subsequently used to obtain annual estimates of R-S, R-A and R-H. In accordance with results reported for other tropical grasslands, we estimated that R-H accounted for 44% of R-S, which represented a flux similar to the amount of carbon brought annually to the soil from below-ground litter production. Overall, this study opens up prospects for simulating the carbon budget of tropical grasslands on a large scale using remotely sensed data. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocotea catharinensis is a basal angiosperm and an endangered tree species from the Brazilian Atlantic Rain Forest. Despite its economical and ecological importance, mass-propagation of this species is hampered by seldom-produced short-lived seeds, and in vitro propagation is challenged by frequently malformed somatic embryos. Therefore, O. catharinensis somatic embryos are also a good experimental material to study the physiological and molecular mechanisms underlying in vitro morphogenesis. In an ongoing effort to characterize genes expressed during somatic embryogenesis of O. catharinensis we have cloned two Ocotea WUSCHEL-related genes. According to our RT-PCR data, both genes were preferentially expressed in embryogenic cell aggregates. One of them, OcWUS, is a possible ortholog of the Arabidopsis WUSCHEL (WUS) gene, which codes for a homeodomain-containing protein involved in the specification and maintenance of the shoot apical meristem. We analyzed the expression patterns of OcWUS and OcWOX4 by RT-PCR, and OcWUS expression was also assessed by in situ hybridization. The expression patterns of OcWUS were very similar to those described for the Arabidopsis WUS. OcWUS transcripts were generally restricted to a small group of cells in the center of the putative shoot apical meristem of O. catharinensis somatic embryos. Perturbed expression of OcWUS might be related to abnormally formed somatic embryos of O. catharinensis obtained through tissue culture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Key message Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple and fast method for the determination of Ca, Cu, Fe, Mg, Mn, Se and Zn in bovine semen by quadrupole inductively coupled plasma spectrometry (q-ICP-MS) is described. Prior to analysis, samples (200 mu L) were diluted 1:50 in a solution containing 0.01% v/v Triton (R) X-100 and 0.5% v/v nitric acid and directly analyzed by ICP-MS. The limits of detection of the method are 0.3, 0.03, 0.2, 0.04, 0.04, 0.03 and 0.03 mu g L-1 for Ca-44, Cu-63, Fe-57, Mg-24, Zn-64, Se-82 and Mn-55, respectively. For purposes of comparison and method validation, four ordinary bovine semen samples were directly analyzed by ICP-MS and by flame atomic absorption spectrometry (FAAS) or graphite furnace atomic absorption spectrometry (GF AAS), with no statistical difference between the techniques at the 95% level when applying the t-test. Then, the proposed method was applied in the determinations of Ca, Cu, Fe, Mg, Mn, Se and Zn in collected samples of bovine semen from different breeds, which are used in reproduction programs and artificial insemination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant growth and development are proportional to biological time, or the thermal time of the species, which can be defined as the integral of the temperature over time between the lower and upper temperature developmental thresholds. The objective of this study was to investigate the efficiency of the growing degree-day (GDD) approach for vines of the 'Niagara Rosada' cultivar pruned in winter and summer seasons, and physiological phases (mobilisation and reserve accumulation) in a humid subtropical region. The experiment was carried out on 13-year-old plants in Piracicaba, So Paulo State-Brazil, evaluating 24 production cycles, 12 from the winter pruning, and 12 from the summer pruning. The statistical design was comprised of randomised blocks, using the pruning dates as treatment: 20 July, 4 August, 19 August, and 3 September (winter); 1 February, 15 February, 2 March, and 16 March (summer). Comparison of the mean values of GDD among pruning dates was evaluated by the Tukey test, and comparison between pruning seasons was made by the F test for orthogonal contrasts, both at the 5% probability level. The results showed good agreement between the values of GDD required to complete the cycle from the winter pruning until harvest when compared with other studies performed with the same cultivar grown in the Southern and Southeastern regions of Brazil. However, there was a consistent statistical difference between GDD computed for winter and summer pruning, which allowed us to conclude that this bio-meteorological index is not sufficient to distinguish vines pruned in different seasons and physiological phases applied in humid subtropical climates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: It had long been thought that a lateral meristem, the so-called primary thickening meristem (PTM) was responsible for stem thickening in monocotyledons. Recent work has shown that primary thickening in the stems of monocotyledons is due to the meristematic activity of both the endodermis and the pericycle. Aims: The aim of this work is to answer a set of questions about the developmental anatomy of monocotyledonous plants: (1) Do the stem apices of monocots have a special meristematic tissue, the PTM? (2) Are the primary tissues of the stem the same as those of the root? (3) Is there good evidence for the formation of both the cortex and the vascular tissue from a single meristem, the PTM, in the shoot and from two distinguishable meristems in the root? (4) If the PTM forms only the cortex, what kind of meristem forms the vascular tissue? Methods: Light microscopy was used to examine stem and root anatomy in 16 species from 10 monocotyledonous families. Results: It was observed that radially aligned cortical cells extend outwards from endodermal initial cells in the cortex of the roots and the stems in all the species. The radial gradation in size observed indicates that the cortical cells are derivatives of a meristematic endodermis. In addition, perfect continuity was observed between the endodermis of the root and that of the stem. Meristematic activity in the pericycle gives rise to cauline vascular bundles composed of metaxylem and metaphloem. Conclusion: No evidence was obtained for the existence in monocotyledons of a PTM. Monocotyledons appear to resemble other vascular plants in this respect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the wide use of plant regeneration for biotechnological purposes, the signals that allow cells to become competent to assume different fates remain largely unknown. Here, it is demonstrated that the Regeneration1 (Rg1) allele, a natural genetic variation from the tomato wild relative Solanum peruvianum, increases the capacity to form both roots and shoots in vitro; and that the gibberellin constitutive mutant procera (pro) presented the opposite phenotype, reducing organogenesis on either root-inducing medium (RIM) or shoot-inducing medium (SIM). Mutants showing alterations in the formation of specific organs in vitro were the auxin low-sensitivity diageotropica (dgt), the lateral suppresser (ls), and the KNOX-overexpressing Mouse ears (Me). dgt failed to form roots on RIM, Me increased shoot formation on SIM, and the high capacity for in vitro shoot formation of ls contrasted with its recalcitrance to form axillary meristems. Interestingly, Rg1 rescued the in vitro organ formation capacity in proRg1 and dgtRg1 double mutants and the ex vitro low lateral shoot formation in pro and ls. Such epistatic interactions were also confirmed in gene expression and histological analyses conducted in the single and double mutants. Although Me phenocopied the high shoot formation of Rg1 on SIM, it failed to increase rooting on RIM and to rescue the non-branching phenotype of ls. Taken together, these results suggest REGENERATION1 and the DELLA mutant PROCERA as controlling a common competence to assume distinct cell fates, rather than the specific induction of adventitious roots or shoots, which is controlled by DIAGEOTROPICA and MOUSE EARS, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Castor bean is a nutrient-demanding species, but there is still little information on its micronutrient requirements. The objectives of this study were to evaluate the effects of levels of B (2.5, 12.5 and 25.0 µmol L-1), Cu (0.05, 0.25 and 0.50 µmol L-1), Mn (0.2, 1.0 and 2.0 µmol L-1) and Zn (0.2, 1.0 and 2.0 µmol L-1) in a nutrient solution on plant B, Cu, Mn and Zn concentrations and uptake, vegetative growth and fruit yield of castor bean "Iris", grown in greenhouse. The experiment was arranged in a completely randomized block design with three replicates. The first deficiency symptoms were observed for B, followed by Zn, Cu and Mn. The main changes in the cell ultrastructure due to lack of B were thickening of the cell walls and middle lamellae, distorted chloroplasts and tightly stacked thylakoids, besides the absence of starch grains. The Mn, Zn and Cu deficiencies led to disruption of chloroplasts, disintegration of thylakoids and absence of amyloplasts. The concentration and uptake of B, Cu, Mn, and Zn in castor bean plants increased with micronutrient supply in the solution. Fruit yield was drastically reduced by B and Mn deficiencies. On the other hand, the dry matter yield of the shoot and root of castor bean plants was not. In the treatment with full nutrient solution, the leaves accumulated 56 and 48 % of the total B and Mn taken up by the plants, respectively, and the seeds and roots 85 and 61 % of the total Cu and Zn taken up, respectively. This shows the high demand of castor bean Iris for B and Mn for fruit yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rangpur lime (Citrus limonia Osbeck) in vitro organogenesis was studied based on explant type and cytokinin culture media supplementation. Four explants types collected from epicotyl or hypocotyl regions of in vitro germinated seedlings were evaluated. The epicotyl-derived explants consisted of epicotyl segments and the hypocotyl-derived explants consisted of the entire hypocotyl segment, the hypocotyl segment attached to a cotyledon fragment, and the hypocotyl segment divided longitudinally. The explants were cultured on EME culture medium supplemented with benzylaminopurine (0, 0.5, 1.0, or 1.5 mg L-1). The evaluation was performed after 6 weeks. Best results considering both the explant responsiveness and number of shoots developed per explants were obtained when epicotyl segments-derived explants were evaluated. Considering the explant responsiveness of hypocotyl segments-derived explants no difference was detected between the entire hypocotyl segment and the hypocotyl segment attached to a cotyledon fragment. Moreover, the percentage of responsive explants decreased when hypocotyl segments divided longitudinally were tested. No difference was detected for the number of shoots developed per explant considering the three types of hypocotyl-derived explants. Culture media supplementation with BAP was not essential for Rangpur lime in vitro organogenesis. However, adventitious shoot development was stimulated in concentrations between 0.5 - 1.0 mg L-1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A produção de mudas é um dos pontos cruciais nos empreendimentos florestais e diversos trabalhos procuraram identificar o método mais adequado de produção. Neste estudo, avaliou-se o uso da espuma fenólica na substituição de recipientes e de substrato na produção de mudas clonais de eucalipto. Foram implantados quatro experimentos, sendo dois de viveiro (experimentos 1 e 2) e dois de campo (experimentos 3 e 4) em locais e períodos distintos. Todos os experimentos foram compostos por quatro tratamentos: 1 - tubete de 55 cm³ + substrato comercial; 2 - espuma pequena (60 cm³); 3 - espuma média (75 cm³); e 4 - espuma grande (90 cm³). Nos experimentos, avaliouse a mortalidade das mudas e a biomassa do sistema radicular e da parte aérea. No experimento 1, as mudas produzidas nas espumas pequenas obtiveram menor índice de mortalidade (1%), enquanto no sistema convencional foi de 15% e observou-se superioridade na produção de biomassa aérea das mudas produzidas na espuma grande. No experimento 2, as mudas produzidas na espuma apresentaram maior sensibilidade ao excesso de água durante a fase de enraizamento, sendo a mortalidade de 40 % para os tratamentos com a utilização da espuma que foi superior ao tratamento convencional (16%). No experimento 3, conduzido no campo, não foi observada mortalidade das mudas ou diferenças na produção de biomassa entre os tratamentos. No experimento 4, observou-se maior resistência ao déficit hídrico nos tratamentos com as espumas média e grande e maior produção de biomassa aérea no tratamento com a espuma grande.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of foliar and soil applied phosphite on grain yield in common bean (Phaseolus vulgaris L.) grown in a weathered soil under low and adequate phosphate availability were evaluated. In the first experiment, treatments were composed of a 2 x 7 + 2 factorial scheme, with 2 soil P levels supplied as phosphate (40 e 200 mg P dm-3 soil), 7 soil P levels supplied as phosphite (0-100 mg P dm-3 soil), and 2 additional treatments (without P supply in soil, and all P supplied as phosphite). In the second experiment, treatments were composed of a 2 x 3 x 2 factorial scheme, with 2 soil phosphate levels (40 e 200 mg P dm-3 soil), combined with 3 nutrient sources applied via foliar sprays (potassium phosphite, potassium phosphate, and potassium chloride as a control), and 2 foliar application numbers (single and two application). Additional treatments showed that phosphite is not P source for common bean nutrition. Phosphite supply in soil increased the P content in shoot (at full physiological maturity stage) and grains, but at the same time considerably decreased grain yield, regardless of the soil phosphate availability. Foliar sprays of phosphite decreased grain yield in plants grown under low soil phosphate availability, but no effect was observed in plants grown under adequate soil phosphate availability. In general, foliar sprays of phosphate did not satisfactorily improve grain yield of the common bean plants grown under low soil phosphate availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] The shoot density, leaf length and biomass of the seagrass Cymodocea nodosa (Ucria) Ascherson were found to severely decline in the last 17 years in the oceanic island of Gran Canaria (central Eastern Atlantic). Five seagrass meadows were sampled in summer and winter of 1994-1995 and in winter and summer 2011. The decrease in C. nodosa correlated with a 3-fold increase in the biomass of the green rhizophytic algae Caulerpa prolifera (Forsskål) J.V. Lamoroux over the same time period, although this increase varied notably among meadows. We also documented a negative correlation between the biomass of C. nodosa and C. prolifera at the island-scale, sampling 16 meadows in 2011. Experimental evidence demonstrated that C. prolifera can cause significant negative impacts on C. nodosa: plots with total (100%) removals of C. prolifera had ca. 2.5 more shoots and 3.5 times more biomass of C. nodosa, after 8 months, compared to plots with 50% removals and untouched control plots. Interference by C. prolifera appears to partially explain the decay in the abundance of C. nodosa populations in Gran Canaria. This study, however, did not identify potential underlying processes and/or environmental alterations that may have facilitated the disappearance of C. nodosa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Seagrass meadows are deteriorating worldwide. However, numerous declines are still unreported, which avoid accurate evaluations of seagrass global trends. This is particularly relevant for the western African coast and nearby oceanic archipelagos in the eastern Atlantic. The seagrass Cymodocea nodosa is an ecological engineer on shallow soft bottoms of the Canary Islands. A comparative decadal study was conducted in 21 C. nodosa seagrass meadows at Gran Canaria Island to compare the structure (shoot density, leaf length and cover) between 2003 and 2012. Overall, 11 meadows exhibited a severe regression, while 10 remained relatively stable. During this period, natural influences (sea surface temperature, Chlorophyll-a concentration and PAR light, as well as the number of storm episodes detaching seagrasses) had a low predictive power on temporal patterns in seagrass structure. In contrast, proximity from a range of human-mediated influences (e.g. the number of outfalls and ports) seem to be related to the loss of seagrass; the rate of seagrass erosion between 2003 and 2012 was significantly predicted by the number of human-mediated impacts around each meadow. This result highlights promoting management actions to conserve meadows of C. nodosa at the study region through efficient management of local impacts