975 resultados para STOCHASTIC MODELING
Resumo:
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
Resumo:
An efficient method for solving the spatially inhomogeneous Boltzmann equation in a two-term approximation for low-pressure inductively coupled plasmas has been developed. The electron distribution function (EDF), a function of total electron energy and two spatial coordinates, is found self-consistently with the static space-charge potential which is computed from a 2D fluid model, and the rf electric field profile which is calculated from the Maxwell equations. The EDF and the spatial distributions of the electron density, potential, temperature, ionization rate, and the inductive electric field are calculated and discussed. (C) 1996 American Institute of Physics.
Resumo:
Based upon the spatially inhomogeneous Boltzmann equation in two-term approximation coupled with electromagnetic and fluid model analysis for the recently developed inductively coupled plasma sources, a self-consistent electron kinetic model is developed. The electron distribution function, spatial distributions of the electron density and ionization rate are calculated and discussed.
Resumo:
Motivated by the observation of the rate effect on material failure, a model of nonlinear and nonlocal evolution is developed, that includes both stochastic and dynamic effects. In phase space a transitional region prevails, which distinguishes the failure behavior from a globally stable one to that of catastrophic. Several probability functions are found to characterize the distinctive features of evolution due to different degrees of nucleation, growth and coalescence rates. The results may provide a better understanding of material failure.
Resumo:
Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.
Resumo:
The effects of stochastic extension on the statistical evolution of the ideal microcrack system are discussed. First, a general theoretical formulation and an expression for the transition probability of extension process are presented, then the features of evolution in stochastic model are demonstrated by several numerical results and compared with that in deterministic model.