999 resultados para SEEDLING PERFORMANCE
Resumo:
A holistic consideration of innovation and associated activities is still very new to consulting engineering firms. This research will have benefits for both industry and academia. The final outcome of this research is a prioritised decision making innovation model that can be used by consulting engineering firms to make informed decisions by investing in appropriate innovation activities that positively impact project performance. This helps by using an informed approach towards investing rather than 'hit-and-miss' trialling.
Resumo:
This paper evaluates and compares the system performance of a solar desiccant-evaporative cooling (SDEC) system with a referenced conventional variable air volume (VAV) system for a typical office building in all 8 Australian capital cities. A simulation model of the building is developed using the whole building simulation software EnergyPlus. The performance indicators for the comparison are system coefficient of performance (COP), annual primary energy consumption, annual energy savings, and annual CO2 emissions reduction. The simulation results show that Darwin has the most apparent advantages for SDEC system applications with an annual energy savings of 557 GJ and CO2 emission reduction of 121 tonnes. The maximum system COP is 7. For other climate zones such as Canberra, Hobart and Melbourne, the SDEC system is not as energy efficient as the conventional VAV system.
Resumo:
Most genome-wide association studies to date have been performed in populations of European descent, but there is increasing interest in expanding these studies to other populations. The performance of genotyping chips in Asian populations is not well established. Therefore, we sought to test the performance of widely used fixed-marker, genome-wide association studies chips in the Han Chinese population. Non-HapMap Chinese samples (n = 396) were genotyped using the Illumina OmniExpress and Affymetrix 6.0 platforms, whereas a subset also were genotyped using the Immunochip. Genotyped markers from the Affymetrix 6.0 and Illumina OmniExpress were used for full genome imputation based on the HapMap 2 JPT+CHB (Japanese from Tokyo, Japan and Chinese from Beijing, China) reference panel. The concordance between markers genotypes for the three platforms was very high whether directly genotyped or genotyped and imputed single nucleotide polymorphisms (SNPs; .99.8% for directly genotyped and .99.5% for genotyped and imputed SNPs, respectively) were compared. The OmniExpress chip data enabled more SNPs to be imputed, particularly SNPs with minor allele frequency .5%. The OmniExpress chip achieved better coverage of HapMap SNPs than the Affymetrix 6.0 chip (73.6% vs. 65.9%, respectively, for minor allele frequency .5%). The Affymetrix 6.0 and Illumina OmniExpress chip have similar genotyping accuracy and provide similar accuracy of imputed SNPs. The OmniExpress chip however provides better coverage of Asian HapMap SNPs, although its coverage of HapMap SNPs is moderate. © 2013 Jiang et al.
Resumo:
A whole of factory model of a raw sugar factory was developed in SysCAD software to assess and improve factory operations. The integrated sugar factory model ‘Sugar-SysCAD’ includes individual models for milling, heating and clarification, evaporation, crystallisation, steam cycle, sugar dryer and process and injection water circuits. These individual unit operation models can be either used as standalone models to optimise the unit operation or in the integrated mode to provide more accurate prediction of the effects of changes in any part of the process on the outputs of the whole factory process. Using the integrated sugar factory model, the effect of specific process operations can be understood and practical solutions can be determined to address process problems. The paper presents two factory scenarios to show the capabilities of the whole of factory model.
Resumo:
As more raw sugar factories become involved in the manufacture of by-products and cogeneration, bagasse is becoming an increasingly valuable commodity. However, in most factories, most of the bagasse produced is used to generate steam in relatively old and inefficient boilers. Efficient bagasse fired boilers are a high capital cost item and the cost of supplying the steam required to run a sugar factory by other means is prohibitive. For many factories a more realistic way to reduce bagasse consumption is to increase the efficiency of existing boilers. The Farleigh No. 3 boiler is a relatively old low efficiency boiler. Like many in the industry, the performance of this boiler has been adversely affected by uneven gas and air flow distributions and air heater leaks. The combustion performance and efficiency of this boiler have been significantly improved by making the gas and air flow distributions through the boiler more uniform and repairing the air heater. The estimated bagasse savings easily justify the cost of the boiler improvements.
Resumo:
Inventory Management (IM) plays a decisive role in the enhancement of efficiency and competitiveness of manufacturing enterprises. Therefore, major manufacturing enterprises are following IM practices as a strategy to improve efficiency and achieve competitiveness. However, the spread of IM culture among Small and Medium Enterprises (SMEs) is limited due to lack of initiation, expertise and financial limitations in developed countries, leave alone developing countries. With this backdrop, this paper makes an attempt to ascertain the role and importance of IM practices and performance of SMEs in the machine tools industry of Bangalore, India. The relationship between inventory management practices and inventory cost are probed based on primary data gathered from 91 SMEs. The paper brings out that formal IM practices have a positive impact on the inventory performance of SMEs.
Resumo:
Fire resistance of load bearing Light Gauge Steel Frame (LSF) wall systems is important to protect lives and properties in fire accidents. Recent fire tests of LSF walls made of the new cold-formed and welded hollow flange channel (HFC) section studs and the commonly used lipped channel section (LCS) studs have shown the influence of stud sections on the fire resistance rating (FRR) of LSF walls. To advance the use of HFC section studs and to verify the outcomes from the fire tests, finite element models were developed to predict the structural fire performance of LSF walls made of welded HFC section studs. The developed models incorporated the measured non-uniform temperature distributions in LSF wall studs due to the exposure of standard fire on one side, and accurate elevated temperature mechanical properties of steel used in the stud sections. These models simulated the various complexities involved such as thermal bowing and neutral axis shift caused by the non-uniform temperature distribution in the studs. The finite element analysis (FEA) results agreed well with the full scale fire test results including the FRR, outer hot and cold flange temperatures at failure and axial deformation and lateral displacement profiles. They also confirmed the superior fire performance of LSF walls made of HFC section studs. The applicability of both transient and steady state FEA of LSF walls under fire conditions was verified in this study, which also investigated the effects of using various temperature distribution patterns across the cross-section of HFC section studs on the FRR of LSF walls. This paper presents the details of this numerical study and the results.
Resumo:
This is a theoretical investigation seeking to learn more about architecture by looking at architectural practice through another discipline. In this research architecture is investigated by examining its relationship with bodies through performance and theatre set design. This thesis aims to build on existing architectural theory, in which an absence of discourse on the body has been identified, by analysing representations of architecture and the body in performance. The research specifically examines the relationship between the body, architecture and authority in performance through the analysis of several performance works.
Resumo:
When designed effectively dashboards are expected to reduce information overload and improve performance management. Hence, interest in dashboards has increased recently,which is also evident from the proliferation of dashboard solution providers in the market. Despite dashboards popularity, little is known about the extent of their effectiveness in organizations. Dashboards draw from multiple disciplines but ultimately use visualization to communicate important information to stakeholders. Thus,a better understanding of visualization can improve the design and use of dashboards. This paper reviews the foundations and roles of dashboards in performance management and proposes a framework for future research, which can enhance dashboard design and perceived usefulness depending on the fit between the features of the dashboard and the characteristics of the users.
Resumo:
This paper presents a power, latency and throughput trade-off study on NoCs by varying microarchitectural (e.g. pipelining) and circuit level (e.g. frequency and voltage) parameters. We change pipelining depth, operating frequency and supply voltage for 3 example NoCs - 16 node 2D Torus, Tree network and Reduced 2D Torus. We use an in-house NoC exploration framework capable of topology generation and comparison using parameterized models of Routers and links developed in SystemC. The framework utilizes interconnect power and delay models from a low-level modelling tool called Intacte[1]1. We find that increased pipelining can actually reduce latency. We also find that there exists an optimal degree of pipelining which is the most energy efficient in terms of minimizing energy-delay product.
Resumo:
Possible integration of Single Electron Transistor (SET) with CMOS technology is making the study of semiconductor SET more important than the metallic SET and consequently, the study of energy quantization effects on semiconductor SET devices and circuits is gaining significance. In this paper, for the first time, the effects of energy quantization on SET inverter performance are examined through analytical modeling and Monte Carlo simulations. It is observed that the primary effect of energy quantization is to change the Coulomb Blockade region and drain current of SET devices and as a result affects the noise margin, power dissipation, and the propagation delay of SET inverter. A new model for the noise margin of SET inverter is proposed which includes the energy quantization effects. Using the noise margin as a metric, the robustness of SET inverter is studied against the effects of energy quantization. It is shown that SET inverter designed with CT : CG = 1/3 (where CT and CG are tunnel junction and gate capacitances respectively) offers maximum robustness against energy quantization.
Resumo:
The fault-tolerant multiprocessor (ftmp) is a bus-based multiprocessor architecture with real-time and fault- tolerance features and is used in critical aerospace applications. A preliminary performance evaluation is of crucial importance in the design of such systems. In this paper, we review stochastic Petri nets (spn) and developspn-based performance models forftmp. These performance models enable efficient computation of important performance measures such as processing power, bus contention, bus utilization, and waiting times.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
Discharge periods of lead-acid batteries are significantly reduced at subzero centigrade temperatures. The reduction is more than what can he expected due to decreased rates of various processes caused by a lowering of temperature and occurs despite the fact that active materials are available for discharge. It is proposed that the major cause for this is the freezing of the electrolyte. The concentration of acid decreases during battery discharge with a consequent increase in the freezing temperature. A battery freezes when the discharge temperature falls below the freezing temperature. A mathematical model is developed for conditions where charge-transfer reaction is the rate-limiting step. and Tafel kinetics are applicable. It is argued that freezing begins from the midplanes of electrodes and proceeds toward the reservoir in-between. Ionic conduction stops when one of the electrodes freezes fully and the time taken to reach that point, namely the discharge period, is calculated. The predictions of the model compare well to observations made at low current density (C/5) and at -20 and -40 degrees C. At higher current densities, however, diffusional resistances become important and a more complicated moving boundary problem needs to be solved to predict the discharge periods. (C) 2009 The Electrochemical Society.