981 resultados para SEAWATER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean acidification and associated changes in seawater carbonate chemistry negatively influence calcification processes and depress metabolism in many calcifying marine invertebrates. We present data on the cephalopod mollusc Sepia officinalis, an invertebrate that is capable of not only maintaining calcification, but also growth rates and metabolism when exposed to elevated partial pressures of carbon dioxide (pCO2). During a 6 wk period, juvenile S. officinalis maintained calcification under ~4000 and ~6000 ppm CO2, and grew at the same rate with the same gross growth efficiency as did control animals. They gained approximately 4% body mass daily and increased the mass of their calcified cuttlebone by over 500%. We conclude that active cephalopods possess a certain level of pre-adaptation to long-term increments in carbon dioxide levels. Our general understanding of the mechanistic processes that limit calcification must improve before we can begin to predict what effects future ocean acidification will have on calcifying marine invertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cold-water coral Lophelia pertusa is one of the few species able to build reef-like structures and a 3-dimensional coral framework in the deep oceans. Furthermore, deep cold-water coral bioherms may be among the first marine ecosystems to be affected by ocean acidification. Colonies of L. pertusa were collected during a cruise in 2006 to cold-water coral bioherms of the Mingulay reef complex (Hebrides, North Atlantic). Shortly after sample collection onboard these corals were labelled with calcium-45. The same experimental approach was used to assess calcification rates and how those changed due to reduced pH during a cruise to the Skagerrak (North Sea) in 2007. The highest calcification rates were found in youngest polyps with up to 1% d-1 new skeletal growth and average rates of 0.11±0.02% d-1±S.E.). Lowering pH by 0.15 and 0.3 units relative to the ambient level resulted in calcification being reduced by 30 and 56%. Lower pH reduced calcification more in fast growing, young polyps (59% reduction) than in older polyps (40% reduction). Thus skeletal growth of young and fast calcifying corallites suffered more from ocean acidification. Nevertheless, L. pertusa exhibited positive net calcification (as measured by 45Ca incorporation) even at an aragonite saturation state below 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide and oxygen fluxes were measured in 0.2 m2 enclosures placed at the water sediment interface in the SW lagoon of New Caledonia. Experiments, performed at several stations in a wide range of environments, were carried out both in darkness to estimate respiration and at ambient light, to assess the effects of primary production. The community respiratory quotient (CRQ = CO2 production rate/02 consumption rate) and the community photosynthetic quotient (CPQ= gross O2 production rate/gross CO2 consumption rate) were calculated by functional regressions. The CRQ value, calculated from 61 incubations, was 1.14 (S.E. 0.05) and the CPQ value, obtained from 18 incubations, was 1.03 (S.E. 0.08). The linearity of the relationship between the O2 and the CO2 fluxes suggests that these values are representative for the whole lagoon

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using living corals collected from Okinawan coral reefs, laboratory experiments were performed to investigate the relationship between coral calcification and aragonite saturation state (W) of seawater at 25?C. Calcification rate of a massive coral Porites lutea cultured in a beaker showed a linear increase with increasing Waragonite values (1.08-7.77) of seawater. The increasing trend of calcification rate (c) for W is expressed as an equation, c = aW + b (a, b: constants). When W was larger than ~4, the coral samples calcified during nighttime, indicating an evidence of dark calcification. This study strongly suggests that calcification of Porites lutea depends on W of ambient seawater. A decrease in saturation state of seawater due to increased pCO2 may decrease reef-building capacity of corals through reducing calcification rate of corals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The boron isotope systematics has been determined for azooxanthellate scleractinian corals from a wide range of both deep-sea and shallow-water environments. The aragonitic coral species, Caryophyllia smithii, Desmophyllum dianthus, Enallopsammia rostrata, Lophelia pertusa, and Madrepora oculata, are all found to have relatively high d11B compositions ranging from 23.2 per mil to 28.7 per mil. These values lie substantially above the pH-dependent inorganic seawater borate equilibrium curve, indicative of strong up-regulation of pH of the internal calcifying fluid (pH(cf)), being elevated by ~0.6-0.8 units (Delta pH) relative to ambient seawater. In contrast, the deep-sea calcitic coral Corallium sp. has a significantly lower d11B composition of 15.5 per mil, with a corresponding lower Delta pH value of ~0.3 units, reflecting the importance of mineralogical control on biological pH up-regulation. The solitary coral D. dianthus was sampled over a wide range of seawater pH(T) and shows an approximate linear correlation with Delta pH(Desmo) = 6.43 - 0.71 pH(T) (r**2 = 0.79). An improved correlation is however found with the closely related parameter of seawater aragonite saturation state, where Delta pH(Desmo) = 1.09 - 0.14 Omega(arag) (r**2 = 0.95), indicating the important control that carbonate saturation state has on calcification. The ability to up-regulate internal pH(cf), and consequently Omega(cf), of the calcifying fluid is therefore a process present in both azooxanthellate and zooxanthellate aragonitic corals, and is attributed to the action of Ca2+ -ATPase in modulating the proton gradient between seawater and the site of calcification. These findings also show that the boron isotopic compositions (d11Bcarb) of aragonitic corals are highly systematic and consistent with direct uptake of the borate species within the biologically controlled extracellular calcifying medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A liquid chromatography/mass spectrometry (LC/MS, electrospray ionisation) method has been developed for the quantification of nitrogenous osmolytes (N-osmolytes) in the particulate fraction of natural water samples. Full method validation demonstrates the validity of the method for measuring glycine betaine (GBT), choline and trimethylamine N-oxide (TMAO) in particulates from seawater. Limits of detection were calculated as 3.5, 1.2 and 5.9 pg injected onto column (equivalent to 1.5, 0.6 and 3.9 nmol per litre) for GBT, choline and TMAO respectively. Precision of the method was typically 3% for both GBT and choline and 6% for TMAO. Collection of the particulate fraction of natural samples was achieved via in-line filtration. Resulting chromatography and method sensitivity was assessed and compared for the use of both glass fibre and polycarbonate filters during sample collection. Ion suppression was shown to be a significant cause of reduced instrument response to N-osmolytes and was associated with the presence of seawater in the sample matrix

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A liquid chromatography/mass spectrometry (LC/MS, electrospray ionisation) method has been developed for the quantification of nitrogenous osmolytes (N-osmolytes) in the particulate fraction of natural water samples. Full method validation demonstrates the validity of the method for measuring glycine betaine (GBT), choline and trimethylamine N-oxide (TMAO) in particulates from seawater. Limits of detection were calculated as 3.5, 1.2 and 5.9 pg injected onto column (equivalent to 1.5, 0.6 and 3.9 nmol per litre) for GBT, choline and TMAO respectively. Precision of the method was typically 3% for both GBT and choline and 6% for TMAO. Collection of the particulate fraction of natural samples was achieved via in-line filtration. Resulting chromatography and method sensitivity was assessed and compared for the use of both glass fibre and polycarbonate filters during sample collection. Ion suppression was shown to be a significant cause of reduced instrument response to N-osmolytes and was associated with the presence of seawater in the sample matrix

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Policyclyc aromatic hydrocarbons (PAHs) are a potential risk for human health and marine biota in general that make necessary the monitorization of them. A miniaturized extraction system capable to extract PAHs from seawater was developed and optimized with the objective of implement it in an oceanographic buoy in the future. An analytical method was optimized by high performance liquid chromatography for the determination of extracted PAHs by the extraction system. The analytical method was validated and applicated to real samples of differents points of Gran Canaria. The method has enough sensitivity to detect and quantify concentrations below the concentrations established in the legislation. In some places where samples were taken some compounds exceed the legislation while other compounds follow it

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neodymium isotopic compositions (εNd) have been largely used for the last fifty years as a tracer of past ocean circulation, and more intensively during the last decade to investigate ocean circulation during the Cretaceous period. Despite a growing set of data, circulation patterns still remain unclear during this period. In particular, the identification of the deep-water masses and their spatial extension within the different oceanic basins are poorly constrained. In this study we present new deep-water εNd data inferred from the Nd isotope composition of fish remains and Fe-Mn oxyhydroxide coatings on foraminifera tests, along with new εNd data of residual (partly detrital) fraction recovered from DSDP sites 152 (Nicaraguan Rise), 258 (Naturaliste Plateau), 323 (Bellinghausen Abyssal Plain), and ODP sites 690 (Maud Rise) and 700 (East Georgia Basin, South Atlantic). The presence of abundant authigenic minerals in the sediments at sites 152 and 690 detected by XRD analyses may explain both middle rare earth element enrichments in the spectra of the residual fraction and the evolution of residual fraction εNd that mirror that of the bottom waters at the two sites. The results point towards a close correspondence between the bottom water εNd values of sites 258 and 700 from the late Turonian to the Santonian. Since the deep-water Nd isotope values at these two sites are also similar to those at other proto-Indian sites, we propose the existence of a common intermediate to deep-water water mass as early as the mid-Cretaceous. The water mass would have extended from the central part of the South Atlantic to the eastern part of proto-Indian ocean sites, beyond the Kerguelen Plateau. Furthermore, data from south and north of the Rio Grande Rise-Walvis Ridge complex (sites 700 and 530) are indistinguishable from the Turonian to Campanian, suggesting a common water mass since the Turonian at least. This view is supported by a reconstruction of the Rio Grande Rise-Walvis Ridge complex during the Turonian, highlighting the likely existence of a deep breach between the Rio Grande Rise and the proto-Walvis Ridge at that time. Thus deep-water circulation may have been possible between the different austral basins as early as the Turonian, despite the presence of potential oceanic barriers. Comparison of new seawater and residue εNd data on Nicaraguan Rise suggest a westward circulation of intermediate waters through the Caribbean Seaway during the Maastrichtian and Paleocene from the North Atlantic to the Pacific. This westward circulation reduced the Pacific water influence in the Atlantic, and was likely responsible for more uniform, less radiogenic εNd values in the North Atlantic after 80 Ma. Additionally, our data document an increasing trend observed in several oceanic basins during the Maastrichtian and the Paleocene, which is more pronounced in the North Pacific. Although the origin of this increase still remains unclear, it might be explained by an increase in the contribution of radiogenic material to upper ocean waters in the northern Pacific. By sinking to depth, these waters may have redistributed to some extent more radiogenic signatures to other ocean basins through deep-water exchanges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studying gamete biology can provide important information about a species fertilization strategy as well as their reproductive ecology. Currently, there is a lack of knowledge about how long sea bass Dicentrarchus labrax eggs can remain viable after being activated in seawater. The objectives of this study were to understand the effects of pre-incubation of fresh and overripe sea bass eggs in seawater and to determine the duration of egg receptivity. Pooled eggs (fresh and overripe) from four females were pre-incubated in seawater for 0 min (control), 0.5 min, 1 min, 3 min, 10 min and 30 min and then fertilized by pooled sperm from four males. The fresh eggs had a higher fertilization success than overripe eggs. Our results revealed a significant effect of pre-incubation time for both the fresh (P < 0.01) and overripe eggs (P < 0.01). Fertilization success of eggs significantly declined for both these treatments after 3 min of pre-incubation, which clearly indicates that sea bass eggs are able to be fertilized by sperm for up to 3 min after release into seawater. This study has particular importance for understanding fertilization strategies, reproductive potential, as well as reproductive ecology of sea bass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work investigates the fouling mechanisms of PVDF hollow fibre membrane (0.03 μm) during the dead end ultrafiltration at a fixed permeate flux (outside to inside configuration) of complex synthetic seawater composed by humic acids, alginic acids, inorganic particles and numerous salts at high concentrations. Short term ultrafiltration experiments at 100 L.h-1.m-2 show that the optimal specific filtered volume seems to be equal to 50 L.m-2. A residual fouling resistance equal to 2.1010 m-1 is added after each cycle of filtration during 8h of ultrafiltration at 100 L.h-1.m-2 and 50 L.m-2. Most of the fouling is reversible (80%). Organics are barely (15% of humic acids) retained by the membrane. Backwash efficiency drops during operation which induces less organics into backwash waters. Humic acids could preferentially accumulate on the membrane early in the ultrafiltration and alginic acids after the build-up of a fouling pre-layer. Colloids and particulates could accumulate inside a heterogeneous fouling layer and/or the concentrate compartment of the membrane module before being more largely recovered inside backwash waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine Recirculating Aquaculture Systems (RAS) produce great volume of wastewater, which may be reutilized/recirculated or reutilized after undergoing different treatment/remediation methods, or partly discharged into neighbour water-bodies (DWW). Phosphates, in particular, are usually accumulated at high concentrations in DWW, both because its monitoring is not compulsory for fish production since it is not a limiting parameter, and also because there is no specific treatment so far developed to remove them, especially in what concerns saltwater effluents. As such, this work addresses two main scientific questions. One of them regards the understanding of the actual (bio)remediation methods applied to effluents produced in marine RAS, by identifying their advantages, drawbacks and gaps concerning their exploitation in saltwater effluents. The second one is the development of a new, innovative and efficient method for the treatment of saltwater effluents that potentially fulfil the gaps identified in the conventional treatments. Thereby, the aims of this thesis are: (i) to revise the conventional treatments targeting major contaminants in marine RAS effluents, with a particular focus on the bioremediation approaches already conducted for phosphates; (ii) to characterize and evaluate the potential of oyster-shell waste collected in Ria de Aveiro as a bioremediation agent of phosphates spiked into artificial saltwater, over different influencing factors (e.g., oyster-shell pre-treatment through calcination, particle size, adsorbent concentration). Despite the use of oyster-shells for phosphorous (P) removal has already been applied in freshwater, its biosorptive potential for P in saltwater was never evaluated, as far as I am aware. The results herein generated showed that NOS is mainly composed by carbonates, which are almost completely converted into lime (CaO) after calcination (COS). Such pre-treatment allowed obtaining a more reactive material for P removal, since higher removal percentages and adsorption capacity was observed for COS. Smaller particle size fractions for both NOS and COS samples also increased P removal. Kinetic models showed that NOS adsorption followed, simultaneously, Elovich and Intraparticle Difusion kinetic models, suggesting that P removal is both a diffusional and chemically rate-controlled process. The percentage of P removal by COS was not controlled by Intraparticle Diffusion and the Elovich model was the kinetic model that best fitted phosphate removal. This work demonstrated that waste oyster-shells, either NOS or COS, could be used as an effective biosorbent for P removal from seawater. Thereby, this biomaterial can sustain a cost-effective and eco-friendly bioremediation strategy with potential application in marine RAS.