979 resultados para SCHIFF-BASE COMPLEXES
Resumo:
Reaction of [Ru2O(O(2)CR)(2)(MeCN)(4)(PPh(3))(2)](ClO4)(2) (1) with 1,2-diaminoethane (en) in MeOH-H2O yielded a mixture of products from which a diamagnetic ruthenium(II) complex [Ru(MeCN)(en)(2)(PPh(3))](ClO4)(2) (2) and a paramagnetic ruthenium(III) species [Ru(O(2)CR)(en)(2)(PPh(3))](BPh(4))(2) (3) (R = Ph, a; C6H4-p-Me, b; C6H4-p-OMe, c) were isolated and characterized. The crystal structure of complex 2, obtained by X-ray diffraction analysis, shows a cis arrangement of the unidentate ligands in this octahedral complex. Complex 3 displays an axial EPR spectrum. Complex 2 undergoes two successive irreversible metal-centred one-electron oxidation processes at 1.13 and 1.33 V vs SCE in MeCN-0.1 M [NBu(4)(n)]ClO4 at 50 mV s(-1). The mechanistic aspects of the core cleavage reactions in 1 are discussed.
Resumo:
Co-ordination complexes of the diphosphazane dioxides Ph(2)P(O)N(Pr-i)P(O)Ph(2) L(1). Ph(2)P(O)N(Pr-i)P(O)Ph(OC(6)H(4)Me-4) L(2) and Ph(2)P(O)N(Pr-i)P(O)(O2C12H8) L(3) with UO22+ or Th4+ ions have been synthesised and characterised by IR and NMR spectroscopy. The structures of [UO2(NO3)(2)L(1)] and [Th(NO3)(2)L(3)(1)][Th(NO3)(6)] are established by X-ray crystallography. In the former, the uranyl ion is bonded to two bidentate nitrate groups and the two phosphoryl groups of the ligand L(1); the co-ordination polyhedron around the metal is a hexagonal bipyramid. The cationic moiety in the thorium complex contains three bidentate diphosphazane dioxide ligands and two bidentate nitrate groups around the ten-co-ordinated metal.
Resumo:
Troger's base was the first amine to be resolved where the chirality was solely due to very high inversion barrier around nitrogen atom(s). Though the molecule was known over a century, work done during the past one decade has shown that Troger's base and its analogues could be used as chiral solvating agents, DNA-binding ligands and for the construction of biomimetic molecular receptors and clathrate hosts, Asymmetric synthesis of Troger's base analogues has also been achieved recently, Because of the rigid, 'V'-shaped chiral nature of this molecule, there is a growing interest for use of this unit in the design of potential host systems, This review article focuses on the chemistry of Troger's base along with the possible future utilities.
Resumo:
Weak molecular interactions such as those in pyridine-iodine, benzene-iodine and benzene-chloroform systems oriented in thermotropic liquid crystals have been studied from the changes of the order parameters as a result of complex formation. The results indicate the formation of at least two types of charge transfer complexes in pyridine-iodine solutions. The pi-complexes in benzene-chloroform and benzene-iodine mixtures have also been detected. No detectable changes in the inter-proton distances in these systems were observed.
Resumo:
Several substituted anilines were converted to binary salts with L-tartaric acid. Second harmonic generation (SHG) activities of these salts were determined. The crystal packing in two structures, (i) m-anisidinium-L-tartrate monohydrate (i) and (ii) p-toluidinium-L-tartrate (2), studied using X-ray diffraction demonstrates that extensive hydrogen bonding steers the components into a framework which has a direct bearing on the SHG activity
Resumo:
Five coordination compounds Zn(mbmpbi)(2)Cl-2 (1), Zn(mbmpbi)(2)Br-2 (2), Cd(mbmpbi)(2)Cl-2 (3), Hg(mbmpbi)(2)Cl-2 (4) and Hg(mbmpbi)(2)Br-2 (5) were synthesized by the reaction of 1-(p-methoxybenzyl)-2-(p-methoxyphenyl)benzimidazole (mbmpbi) with the corresponding metal halides. The complexes have been characterized by elemental analysis, conductance measurements, FT-IR, H-1 NMR and photoluminescence spectral studies. The ligand mbmpbi exhibits the N-benzimidazole coordination. The structures of 3-5 have been determined by single crystal X-ray diffraction. These three complexes are isostructural, crystallizing in the monoclinic system. P2/n space group with a distorted tetrahedral geometry around the metal ion. Zn(II) and Cd(II) complexes show strong blue emission in solid state at room temperature. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Reduced expression of CCR5 on target CD4(+) cells lowers their susceptibility to infection by R5-tropic HIV-1, potentially preventing transmission of infection and delaying disease progression. Binding of the HIV-1 envelope (Env) protein gp120 with CCR5 is essential for the entry of R5 viruses into target cells. The threshold surface density of gp120-CCR5 complexes that enables HIV-1 entry remains poorly estimated. We constructed a mathematical model that mimics Env-mediated cell-cell fusion assays, where target CD4(+)CCR5(+) cells are exposed to effector cells expressing Env in the presence of a coreceptor antagonist and the fraction of target cells fused with effector cells is measured. Our model employs a reaction network-based approach to describe protein interactions that precede viral entry coupled with the ternary complex model to quantify the allosteric interactions of the coreceptor antagonist and predicts the fraction of target cells fused. By fitting model predictions to published data of cell-cell fusion in the presence of the CCR5 antagonist vicriviroc, we estimated the threshold surface density of gp120-CCR5 complexes for cell-cell fusion as similar to 20 mu m(-2). Model predictions with this threshold captured data from independent cell-cell fusion assays in the presence of vicriviroc and rapamycin, a drug that modulates CCR5 expression, as well as assays in the presence of maraviroc, another CCR5 antagonist, using sixteen different Env clones derived from transmitted or early founder viruses. Our estimate of the threshold surface density of gp120-CCR5 complexes necessary for HIV-1 entry thus appears robust and may have implications for optimizing treatment with coreceptor antagonists, understanding the non-pathogenic infection of non-human primates, and designing vaccines that suppress the availability of target CD4(+)CCR5(+) cells.
Resumo:
Activation of the B-H sigma-bond of amine-boranes on the chromium(0) center of arene chromium tricarbonyl complexes (eta(6)-arene) Cr(CO)(3) (arene = fluorobenzene, 1a; benzene, 1b and mesitylene, 1c) has been studied. Photolysis of 1b in presence of ammonia-borane (H3N center dot BH3, AB) and tert-butylamine-borane ((BuH2N)-Bu-t center dot BH3, TBAB) resulted in H-2 evolution and precipitation of a BNHx polymer. On the other hand, photolysis in the presence of trimethylamine-borane (Me3N center dot BH3, TMAB) resulted in the formation of a sigma-borane complex (2) along with Cr(CO)(5)(eta(1)-HBH2 center dot NMe3) (3). The sigma-borane complexes (eta(6)-arene) Cr-( CO)(2)(eta(1)-HBH2 center dot NMe3) (arene = fluorobenzene, 2a; benzene, 2b and mesitylene, 2c) were characterized in solution by H-1, B-11, and C-13 NMR spectroscopy. Electron withdrawing substituents on the arene ring provide the more stable sigma-borane moiety in this series of complexes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The ligand bis(diphenylphosphino)aniline (dppan) has been shown to be a versatile ligand sporting different coordination modes and geometries as dictated by copper(I) and the counter ion. The molecular structures of its Cu(I) complexes were characterized by X-ray crystallography. The ligand was found in a chelating mode and monomeric complexes were formed when the ligand to copper ratio was 2: 1 and the anion was non-coordinating. However, with thiocyanate as the counter anion, the ligand was found to adopt two different modes, with one ligand chelating and the other acting as a monodentate ligand. With CuX (X = Cl, Br), dppan formed a tetrameric complex when the ligand and metal were reacted in the ratio of 1:1. But reactions containing ligand and metal in the ratios of 1: 2 or 2: 1, resulted in the formation of a mixture of species in solution. Crystallization however, led to the isolation of the tetrameric complex. Variable temperature P-31{H-1} NMR spectra of the isolated tetramers did not show the presence of chelated structures in solution. Tetra-alkylammonium salts were added to solutions of various complexes of dppan and studied by P-31{H-1} NMR to probe the effect of anions on the stability of complexes in solution. The Cu-dppan complexes were robust and did not interconvert with other structures in solution unlike the bis(diphenylphosphino) isopropylamine complexes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Metallo-beta-lactamases (m beta l) and phosphotriesterase (PTE) are zinc(II) enzymes, which hydrolyze the beta-lactam antibiotics and toxic organophosphotriesters, respectively. In the present work, we have synthesized a few asymmetric phenolate-based ligands by sequential Mannich reaction and their corresponding zinc(II) complexes. These zinc(II) complexes were studied for their m beta l and PTE activities. It is shown that the zinc(II) complexes can hydrolyze oxacillin, the beta-lactam antibiotic, at much higher rates as compared to the hydrolysis of p-nitrophenyl diphenylphosphate (PNPDPP), the phosphotriester. Among the complexes studied, the binuclear asymmetric complex 1 having a water molecule coordinated to one of the zinc(II) ions exhibits much better mbl activity than the mononuclear complexes. However, the mononuclear zinc(II) complexes having labile chloride ions exhibit significant PTE activity, which can be ascribed to the replacement of chloride ions by hydroxide ions during hydrolysis reactions. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared. in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent beta (bcc) and the product alpha (hcp) or gamma-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared:, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables. Martensites exhibiting dislocated lath, internally twinned plate, and self-accommodating three-plate cluster morphologies have been encountered in Zr-2.5Nb alloy. Habit planes corresponding to all these morphologies have been found to be consistent with the predictions based on the invariant plane strain (IFS) criterion. Different morphologies have been found to reflect the manner in which the neighboring martensite variants are assembled. Lattice-invariant shears (LISs) for all these cases have been identified to be either {10 (1) over bar 1}(alpha) ((1) over bar 123)(alpha) slip or twinning on (10 (1) over bar 1)(alpha) planes. Widmanstatten alpha precipitates, forming in a step-quenching treatment, have been shown to have a lath morphology, the alpha/beta interface being decorated with a periodic array of (c + a) dislocations at a spacing of 8 to 10 nm. The line vectors of these dislocations are nearly parallel to the invariant lines. The alpha precipitates, forming in the retained beta phase on aging, exhibit an internally twinned structure with a zigzag habit plane. Average habit planes for the morphologies have been found to lie near the {103}(beta) - {113}(beta) poles, which are close to the specific variant of the {112}(beta) plane, which transforms into a prismatic plane of the type {1 (1) over bar 00}(alpha). The crystallography of the formation of the gamma-hydride phase (fct) from both the alpha and beta phases is seen to match the IFS predictions. While the beta-gamma transformation can be treated approximately as a simple shear on the basal plane involving a change in the stacking sequence, the alpha-gamma transformation call be conceptually broken into a alpha --> beta transformation following the Burgers correspondence and the simple beta-gamma shear process. The active eutectoid decomposition in the Zr-Cu system, beta --> alpha + beta', has been described in terms of cooperative growth of the alpha phase from the beta phase through the Burgers correspondence and of the partially ordered beta' (structurally similar to the equilibrium Zr2Cu phase) through an ordering process. Similarities and differences in crystallographic features of these transformations have been discussed. and the importance of the invariant line vector in deciding the geometry of the corresponding habit planes has been pointed out.
Resumo:
The He I photoelectron spectra of bromine, methylamine, and their complex have been obtained, and the spectra show that lone-pair orbital energy of nitrogen in methylamine is stabilized by 1.8 eV and the bromine orbital energies are destabilized by about 0.5 eV due to complexation. Ab initio calculations have been performed on the charge-transfer complexes of Br-2 with ammonia and methyl-, dimethyl-, and trimethylamines at the 3-21G*, 6-311G, and 6-311G* levels and also with effective core potentials. Calculations predict donor and acceptor orbital energy shifts upon complexation, and there is a reasonable agreement between the calculated and experimental results. Complexation energies have been corrected for BSSE. Frequency analysis has confirmed that ammonia and trimethylamine form complexes with C-3v symmetry and methylamine and dimethylamine with C-s symmetry. Calculations reveal that the lone-pair orbital of nitrogen in amine and the sigma* orbital of Br-2 are involved in the charge-transfer interaction. LANL1DZ basis seems to be consistent and give a reliable estimate of the complexation energy. The computed complexation energies, orbital energy shifts, and natural bond orbital analysis show that the strength of the complex gradually increases from ammonia to trimethylamine.
Resumo:
Electron transfer is an essential activity in biological systems. The migrating electron originates from water-oxygen in photosynthesis and reverts to dioxygen in respiration. In this cycle two metal porphyrin complexes possessing circular conjugated system and macrocyclic pi-clouds, chlorophyll and hems, play a decisive role in mobilising electrons for travel over biological structures as extraneous electrons. Transport of electrons within proteins (as in cytochromes) and within DNA (during oxidative damage and repair) is known to occur. Initial evaluations did not favour formation of semiconducting pathways of delocalized electrons of the peptide bonds in proteins and of the bases in nucleic acids. Direct measurement of conductivity of bulk material and quantum chemical calculations of their polymeric structures also did not support electron transfer in both proteins and nucleic acids. New experimental approaches have revived interest in the process of charge transfer through DNA duplex. The fluorescence on photoexcitation of Ru-complex was found to be quenched by Rh-complex, when both were tethered to DNA and intercalated in the base stack. Similar experiments showed that damage to G-bases and repair of T-T dimers in DNA can occur by possible long range electron transfer through the base stack. The novelty of this phenomenon prompted the apt name, chemistry at a distance. Based on experiments with ruthenium modified proteins, intramolecular electron transfer in proteins is now proposed to use pathways that include C-C sigma-bonds and surprisingly hydrogen bonds which remained out of favour for a long time. In support of this, some experimental evidence is now available showing that hydrogen bond-bridges facilitate transfer of electrons between metal-porphyrin complexes. By molecular orbital calculations over 20 years ago. we found that "delocalization of an extraneous electron is pronounced when it enters low-lying virtual orbitals of the electronic structures of peptide units linked by hydrogen bonds". This review focuses on supramolecular electron transfer pathways that can emerge on interlinking by hydrogen bonds and metal coordination of some unnoticed structures with pi-clouds in proteins and nucleic acids, potentially useful in catalysis and energy missions.
Resumo:
A beta (39-43 aminoacid residues) is the principal peptide component of amyloid deposits in Alzheimer's disease (AD). A beta peptide is derived from the amyloid precursor protein (APP) in which mutations give rise to many forms of familial AD. Aluminium is reported to play a key role in inducing conformational change in the synthetic beta-amyloid peptide (1-40)from alpha-helix to beta-pleated sheet, leading to aggregation and fibrillar formation. We have studied the interaction of amino acid-Al complexes such as D-Asp-Al and L-Glu-Al with A beta(1-40) in TFE/buffer (70% TFE and 30% H2O v/v pH 6.7) mixture using CD spectroscopy. The interaction of either of these amino acid complexes with A beta(1-40) results in loss of alpha-helical content and the peptide is more unstructured compared to free Al3+ in the solution. Our data strongly support the idea, that the Al3+ in the form of aminoacid-Al complexes is more effective in inducing random coil conformation in the A beta peptide than the free Al3+ present in the solution.
Resumo:
The coordinating behavior of a new dihydrazone ligand, 2,6-bis(3-methoxysalicylidene) hydrazinocarbonyl]pyridine towards manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and cadmium(II) has been described. The metal complexes were characterized by magnetic moments, conductivity measurements, spectral (IR, NMR, UV-Vis, FAB-Mass and EPR) and thermal studies. The ligand crystallizes in triclinic system, space group P-1, with alpha=98.491(10)degrees, beta=110.820(10)degrees and gamma=92.228(10)degrees. The cell dimensions are a=10.196(7)angstrom, b=10.814(7)angstrom, c=10.017(7)angstrom, Z=2 and V=1117.4(12). IR spectral studies reveal the nonadentate behavior of the ligand. All the complexes are neutral in nature and possess six-coordinate geometry around each metal center. The X-band EPR spectra of copper(II) complex at both room temperature and liquid nitrogen temperature showed unresolved broad signals with g(iso) = 2.106. Cyclic voltametric studies of copper(II) complex at different scan rates reveal that all the reaction occurring are irreversible. (C) 2011 Elsevier B.V. All rights reserved.