984 resultados para Rothman, Barbara Katz: Ei yksin geeneistä
Resumo:
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Acute promyelocytic leukemia (APL) is characterized by a block in differentiation and accumulation of promyelocytes in the bone marrow and blood. The majority of APL patients harbor the t(15: 17) translocation leading to expression of the fusion protein promyelocytic-retinoic acid receptor alpha. Treatment with retinoic acid leads to degradation of promyelocytic-retinoic acid receptor alpha protein and disappearance of leukemic cells; however, 30% of APL patients relapse after treatment. One potential mechanism for relapse is the persistence of cancer ""stem"" cells in hematopoietic organs after treatment. Using a novel sorting strategy we developed to isolate murine myeloid cells at distinct stages of differentiation, we identified a population of committed myeloid cells (CD34(+), c-kit(+), Fc gamma RIII/II(+), Gr1(int)) that accumulates in the spleen and bone marrow in a murine model of APL. We observed that these cells are capable of efficiently generating leukemia in recipient mice, demonstrating that this population represents the APL cancer-initiating cell. These cells down-regulate the transcription factor CCAAT/enhancer binding protein alpha (C/EBP alpha) possibly through a methylation-dependent mechanism, indicating that C/EBP alpha deregulation contributes to transformation of APL cancer-initiating cells. Our findings provide further understanding of the biology of APL by demonstrating that a committed transformed progenitor can initiate and propagate the disease. (Blood. 2009; 114: 5415-5425)
Resumo:
TP73 encodes for two proteins: full-length TAp73 and Delta Np73, which have little transcriptional activity and exert dominant-negative function towards TP53 and TAp73. We compared TATP73 and Delta NTP73 expression in acute myeloid leukaemia (AML) samples and normal CD34(+) progenitors. Both forms were more highly expressed in leukaemic cells. Amongst AML blasts, TATP73 was more expressed in AML harbouring the recurrent genetic abnormalities (RGA): PML-RARA, RUNX1-RUNX1T1 and CBFB-MYH11, whereas higher Delta NTP73 expression was detected in non-RGA cases. TP53 expression did not vary according to Delta NTP73/TATP73 expression ratio. Leukaemic cells with higher Delta NTP73/TATP73 ratios were significantly more resistant to cytarabine-induced apoptosis.
Resumo:
Indole-3-acetic acid (IAA), when oxidized by horseradish peroxidase (HRP), is transformed into cytotoxic molecules capable of inducing cell injury. The aim of this study was to test if, by targeting hematopoietic tumors with HRP-conjugated antibodies in association with IAA treatment, there is induction of apoptosis. We used two lineages of hematologic tumors: NB4, derived from acute promyelocytic leukemia (APL) and Granta-519 from mantle cell lymphoma (MCL). We also tested cells from 12 patients with acute myeloid leukemia (AML) and from 10 patients with chronic lymphocytic leukemia (CLL). HRP targeting was performed with anti-CD33 or anti-CD19 antibodies (depending on the origin of the cell), followed by incubation with goat anti-mouse antibody conjugated with HRP. Eight experimental groups were analyzed: control, HRP targeted, HRP targeted and incubated with 1, 5 and 10 mM IAA, and cells not HRP targeted but incubated with 1, 5 and 10 mM IAA. Apoptosis was analyzed by flow cytometry using annexin V-FITC and propidium iodide labeling. Results showed that apoptosis was dependent on the dose of IAA utilized, the duration of exposure to the prodrug and the origin of the neoplasia. Targeting HRP with antibodies was efficient in activating IAA and inducing apoptosis. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Rationale Sepsis is a leading cause of death in the intensive care unit, characterized by a systemic inflammatory response (SIRS) and bacterial infection, which can often induce multiorgan damage and failure. Leukocyte recruitment, required to limit bacterial spread, depends on phosphoinositide-3 kinase gamma (PI3K gamma) signaling in vitro; however, the role of this enzyme in polymicrobial sepsis has remained unclear. Objectives: This study aimed to determine the specific role of the kinase activity of PI3K gamma in the pathogenesis of sepsis and multiorgan damage. Methods. PI3K gamma wild-type, knockout, and kinase-dead mice were exposed to cecal ligation and perforation induced sepsis and assessed for survival; pulmonary, hepatic, and cardiovascular damage; coagulation derangements; systemic inflammation; bacterial spread; and neutrophil recruitment. Additionally, wild-type mice were treated either before or after the onset of sepsis with a PI3K gamma inhibitor and assessed for survival, neutrophil recruitment, and bacterial spread. Measurements and Main Results: Both genetic and pharmaceutical PI3K gamma kinase inhibition significantly improved survival, reduced multiorgan damage, and limited bacterial decompartmentalization, while modestly affecting SIRS. Protection resulted from both neutrophil-independent mechanisms, involving improved cardiovascular function, and neutrophil-dependent mechanisms, through reduced susceptibility to neutrophil migration failure during severe sepsis by maintaining neutrophil surface expression of the chemokine receptor, CXCR2. Furthermore, PI3K gamma pharmacological inhibition significantly decreased mortality and improved neutrophil migration and bacterial control, even when administered during established septic shock. Conclusions: This study establishes PI3K gamma as a key molecule in the pathogenesis of septic infection and the transition from SIRS to organ damage and identifies it as a novel possible therapeutic target.
Resumo:
PURPOSE. To assess the safety of transcorneal electrical stimulation (TES) and explore its efficacy in various subjective and objective parameters of visual function in patients with retinitis pigmentosa (RP). METHODS. Twenty-four patients in this prospective, randomized, partially blinded, good-clinical-practice study underwent TES (5-ms biphasic pulses; 20 Hz; DTL electrodes) 30 minutes per week for 6 consecutive weeks. The patients were randomly assigned to one of three groups: sham, 66%, or 150% of individual electrical phosphene threshold (EPT). Visual acuity (VA), visual field (VF; kinetic, static), electroretinography (Ganzfeld, multifocal), dark-adaptation (DA), color discrimination, and EPTs were assessed at all visits or four times, according to the study plan. RESULTS. TES using DTL electrodes was tolerated well; all patients finished the study. Two adverse (foreign body sensation), but no serious adverse events were encountered. There was a tendency for most functional parameters to improve (8/18) or to remain constant (8/18) in the 150% group. VF area and scotopic b-wave amplitude reached statistical significance (P < 0.027 and P < 0.001, respectively). Only desaturated color discrimination and VF mean sensitivity decreased. There was no obvious trend in the 66% group. CONCLUSIONS. TES was found to be safe in RP patients. Positive trends were discovered, but due to the small sample size of this exploratory study, statistical significance was reached only for VF area and scotopic b-wave amplitude. Further studies with larger sample sizes and longer duration are needed to confirm the findings and to define optimal stimulation parameters. (ClinicalTrials.gov number, NCT00804102.) (Invest Ophthalmol Vis Sci. 2011;52:4485-4496) DOI:10.1167/iovs.10-6932
Resumo:
To understand the biology and evolution of ruminants, the cattle genome was sequenced to about sevenfold coverage. The cattle genome contains a minimum of 22,000 genes, with a core set of 14,345 orthologs shared among seven mammalian species of which 1217 are absent or undetected in noneutherian (marsupial or monotreme) genomes. Cattle-specific evolutionary breakpoint regions in chromosomes have a higher density of segmental duplications, enrichment of repetitive elements, and species-specific variations in genes associated with lactation and immune responsiveness. Genes involved in metabolism are generally highly conserved, although five metabolic genes are deleted or extensively diverged from their human orthologs. The cattle genome sequence thus provides a resource for understanding mammalian evolution and accelerating livestock genetic improvement for milk and meat production.
Resumo:
Acute pulmonary embolism produces acute pulmonary hypertension, which can be counteracted by activating the nitric oxide-cyclic guanosine 3`,5`-monophosphate (cGMP) pathway. While previous studies have shown that sildenafil (an inhibitor of cGMP-specific phosphodiesterase type 5) or nitrite (a storage molecule for nitric oxide) produces beneficial effects during acute pulmonary embolism, no previous study has examined whether the combination of these drugs can produce additive effects. Here, we expand previous findings and examine whether sildenafil enhances the beneficial haemodynamic effects produced by a low-dose infusion of nitrite in a dog model of acute pulmonary embolism. Haemodynamic and arterial blood gas evaluations were performed in non-embolized dogs treated with saline (n = 4), and in embolized dogs (intravenous injections of microspheres) that received nitrite (6.75 mu mol/kg intravenously over 15 min. followed by 0.28 mu mol/kg/min.) and sildenafil (0.25 mg/kg over 30 min.; n = 8), or nitrite followed by saline (n = 8), or saline followed by sildenafil (n = 7), or only saline (n = 8). Plasma thiobarbituric acid-reactive substances (TBARS) concentrations were determined using a fluorometric method. Acute pulmonary embolism increased pulmonary artery pressure by similar to 24 mmHg. While the infusion of nitrite or sildenafil infusions reversed this increase by similar to 42% (both P < 0.05), the combined infusion of both drugs reversed this increase by similar to 58% (P < 0.05). Similar effects were seen on the pulmonary vascular resistance index. Nitrite or sildenafil alone produced no significant hypotension. However, the combined infusion of both drugs caused transient hypotension (P < 0.05). Both dugs, either alone or combined, blunted the increase in TBARS concentrations caused by acute pulmonary embolism (all P < 0.05). These results suggest that sildenafil improves the beneficial haemodynamic effects of nitrite during acute pulmonary embolism.