974 resultados para Reaction function
Resumo:
It has been experimentally established that nickel and cobalt can be extracted from their ferrites with sodium sulphate melt containing femc ions. The kinetics of extraction from synthetic ferrites using a melt of sodium and ferric sulphates of eutectic composition has been studied as a function of the particle size of the ferrite and temperature in the range 900 to 1073 K. The divalent ions in the ferrite exchange with the ferric ion in the melt, leaving a residue of hematite.The rate of reaction conforms to the Crank-Ginstling-Brounshtein diffusion model. The reaction rate is governed by the counter-diffusion of ~ e an~d ~+i ' +(or co2+) ions in the hematite lattice. Analytical expressions for the rate constants have been derived from the experimental data as a function of particle size and temperature. The activation energy for the extraction of nickel from nickel ferrite is 154(+10) kJ mol-' and the corresponding value for cobalt is 142(+10)kJ mol;'. In sulphation roasting of minerals containing nickel, the yield of nickel is generally limited to 75% due to the formation of insoluble ferrites. The use of melts based on sodium sulphate provides a possible route for enhancing the recovery of nickel to approximately 98%.
Resumo:
The thermodynamic stability of the compound BaCu2O2 was determined using a solid-state galvanic cell: View the MathML source as a function of temperature in the range 970–1170 K. Single crystal BaF2 was used as the solid electrolyte. The partial pressure of oxygen in the argon gas flowing over the electrodes was 1.27 Pa. The reversible e.m.f. of the cell can be expressed by View the MathML source. The Gibbs free energy of formation of barium cuprite from component oxides according to the reaction View the MathML source is View the MathML source.
Resumo:
Explored in this study is an electronically mediated reaction (EMR) route for the production of niobium powder using calcium as a reductant for niobium oxide (Nb2O5). Feed material, Nb2O5, and reductant calcium alloy containing aluminum and nickel were charged into electronically isolated locations in a molten salt (e.g. CaCl2) at 1173 K. The current flow through an external path between the feed and reductant locations was monitored. A current approximately 0.4 A was measured during the reaction in the external circuit connecting cathode and anode location. Niobium powder with low aluminum and nickel content was obtained although liquid Ca–Al–Ni alloy was used as the reductant. This clearly demonstrates that niobium metal powder can be produced by an electronically mediated reaction (EMR), without direct physical contact between feed (Nb2O5) and reductant (calcium). Mechanism of calciothermic reduction of Nb2O5 in the molten salt is discussed using an isothermal chemical potential diagram.
Resumo:
Structure and phase transition of LaO1−xF1+2x, prepared by solid-state reaction of La2O3 and LaF3, was investigated by X-ray powder diffraction and differential scanning calorimetry for both positive and negative values of the nonstoichiometric parameter x. The electrical conductivity was investigated as a function of temperature and oxygen partial pressure using AC impedance spectroscopy. Fluoride ion was identified as the migrating species in LaOF by coulometric titration and transport number determined by Tubandt technique and EMF measurements. Activation energy for conduction in LaOF was 58.5 (±0.8) kJ/mol. Conductivity increased with increasing fluorine concentration in the oxyfluoride phase, suggesting that interstitial fluoride ions are more mobile than vacancies. Although the values of ionic conductivity of cubic LaOF are lower, the oxygen partial pressure range for predominantly ionic conduction is larger than that for the commonly used stabilized-zirconia electrolytes. Thermodynamic analysis shows that the oxyfluoride is stable in atmospheres containing diatomic oxygen. However, the oxyfluoride phase can degrade with time at high temperatures in atmospheres containing water vapor, because of the higher stability of HF compared with H2O.
Resumo:
An isothermal section of the system Al2O3-CaO-CoO at 1500 K has been established by equilibrating 22 samples of different compositions at high temperature and phase identification by optical and scanning electron microscopy, X-ray diffraction, and energy dispersive spectroscopy after quenching to room temperature. Only one quaternary oxide, Ca3CoAl4O10, was identified inside the ternary triangle. Based on the phase relations, a solid-state electrochemical cell was designed to measure the Gibbs energy of formation of Ca3CoAl4O10 in the temperature range from 1150 to 1500 K. Calcia-stabilized zirconia was used as the solid electrolyte and a mixture of Co + CoO as the reference electrode. The cell can be represented as: ( - )\textPt,\textCaAl 2 \textO 4 + \textCa 1 2 \textAl 1 4 \textO 3 3 + \textCa 3 \textCoAl 4 \textO 10 + \textCo//(CaO)ZrO 2 \text// \textCoO + \textCo,\text Pt ( + ). (−)PtCaAl2O4+Ca12Al14O33+Ca3CoAl4O10+Co//(CaO)ZrO2//CoO+Co Pt (+) From the emf of the cell, the standard Gibbs energy change for the Ca3CoAl4O10 formation reaction, CoO + 3/5CaAl2O4 + 1/5Ca12Al14O33 → Ca3CoAl4O10, is obtained as a function of temperature: \Updelta Gr\texto Unknown control sequence '\Updelta'/J mol−1 (±50) = −2673 + 0.289 (T/K). The standard Gibbs energy of formation of Ca3CoAl4O10 from its component binary oxides, Al2O3, CaO, and CoO is derived as a function of temperature. The standard entropy and enthalpy of formation of Ca3CoAl4O10 at 298.15 K are evaluated. Chemical potential diagrams for the system Al2O3-CaO-CoO at 1500 K are presented based on the results of this study and auxiliary information from the literature.
Resumo:
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (m beta 1, m beta 1'beta 2, m beta 1-beta 5, m beta 1-beta 6 and m beta 4-beta 5) by transplanting beta 1, beta 1'beta 2, beta 1-beta 5, beta 1-beta 6 and beta 4-beta 5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, m beta 1'beta 2(ESWR) SSB was generated by mutating the MtuSSB specific `PRIY' sequence in the beta 2 strand of m beta 1'beta 2 SSB to EcoSSB specific `ESWR' sequence. Biochemical characterization revealed that except for m beta 1 SSB, all chimeras and a control construct lacking the C-terminal domain (Delta C SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, m beta 1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that m beta 1-beta 6, MtuSSB, m beta 1'beta 2 and m beta 1-beta 5 SSBs complemented E. coli Delta ssb in a dose dependent manner. Complementation by the m beta 1-beta 5 SSB was poor. In contrast, m beta 1'beta 2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.
Resumo:
Pure stoichiometric MgRh(2)O(4) could not be prepared by solid state reaction from an equimolar mixture of MgO and Rh(2)O(3) in air. The spinel phase formed always contained excess of Mg and traces of Rh or Rh(2)O(3). The spinel phase can be considered as a solid solution of Mg(2)RhO(4) in MgRh(2)O(4). The compositions of the spinel solid solution in equilibrium with different phases in the ternary system Mg-Rh-O were determined by electron probe microanalysis. The oxygen potential established by the equilibrium between Rh + MgO + Mg(1+x)Rh(2-x)O(4) was measured as a function of temperature using a solid-state cell incorporating yttria-stabilized zirconia as an electrolyte and pure oxygen at 0.1 MPa as the reference electrode. To avoid polarization of the working electrode during the measurements, an improved design of the cell with a buffer electrode was used. The standard Gibbs energies of formation of MgRh(2)O(4) and Mg(2)RhO(4) were deduced from the measured electromotive force (e.m.f.) by invoking a model for the spinel solid solution. The parameters of the model were optimized using the measured composition of the spinel solid solution in different phase fields and imposed oxygen partial pressures. The results can be summarized by the equations: MgO + beta -Rh(2)O(3) -> MgRh(2)O(4); Delta G degrees (+ 1010)/J mol(-1) = -32239 + 7.534T; 2MgO + RhO(2) -> Mg(2)RhO(4); Delta G degrees(+/- 1270)/J mol(-1) = 36427 -4.163T; Delta G(M)/J mol(-1) = 2RT(xInx + (1-x)In(1-x)) + 4650x(1-x), where Delta G degrees is the standard Gibbs free energy change for the reaction and G(M) is the free energy of mixing of the spinel solid solution Mg(1+x)Rh(2-x)O(4). (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
The setting considered in this paper is one of distributed function computation. More specifically, there is a collection of N sources possessing correlated information and a destination that would like to acquire a specific linear combination of the N sources. We address both the case when the common alphabet of the sources is a finite field and the case when it is a finite, commutative principal ideal ring with identity. The goal is to minimize the total amount of information needed to be transmitted by the N sources while enabling reliable recovery at the destination of the linear combination sought. One means of achieving this goal is for each of the sources to compress all the information it possesses and transmit this to the receiver. The Slepian-Wolf theorem of information theory governs the minimum rate at which each source must transmit while enabling all data to be reliably recovered at the receiver. However, recovering all the data at the destination is often wasteful of resources since the destination is only interested in computing a specific linear combination. An alternative explored here is one in which each source is compressed using a common linear mapping and then transmitted to the destination which then proceeds to use linearity to directly recover the needed linear combination. The article is part review and presents in part, new results. The portion of the paper that deals with finite fields is previously known material, while that dealing with rings is mostly new.Attempting to find the best linear map that will enable function computation forces us to consider the linear compression of source. While in the finite field case, it is known that a source can be linearly compressed down to its entropy, it turns out that the same does not hold in the case of rings. An explanation for this curious interplay between algebra and information theory is also provided in this paper.
Resumo:
Reaction wheel assemblies (RWAs) are momentum exchange devices used in fine pointing control of spacecrafts. Even though the spinning rotor of the reaction wheel is precisely balanced to minimize emitted vibration due to static and dynamic imbalances, precision instrument payloads placed in the neighborhood can always be severely impacted by residual vibration forces emitted by reaction wheel assemblies. The reduction of the vibration level at sensitive payloads can be achieved by placing the RWA on appropriate mountings. A low frequency flexible space platform consisting of folded continuous beams has been designed to serve as a mount for isolating a disturbance source in precision payloads equipped spacecrafts. Analytical and experimental investigations have been carried out to test the usefulness of the low frequency flexible platform as a vibration isolator for RWAs. Measurements and tests have been conducted at varying wheel speeds, to quantify and characterize the amount of isolation obtained from the reaction wheel generated vibration. These tests are further extended to other variants of similar design in order to bring out the best isolation for given disturbance loads. Both time and frequency domain analysis of test data show that the flexible beam platform as a mount for reaction wheels is quite effective and can be used in spacecrafts for passive vibration control. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel k(S)(z, w) = ( 1 - z(w)over bar)- 1 for |z|, |w| < 1, by means of (1/k(S))( T, T *) = 0, we consider an arbitrary open connected domain Omega in C(n), a kernel k on Omega so that 1/k is a polynomial and a tuple T = (T(1), T(2), ... , T(n)) of commuting bounded operators on a complex separable Hilbert spaceHsuch that (1/k)( T, T *) >= 0. Under some standard assumptions on k, it turns out that whether a characteristic function can be associated with T or not depends not only on T, but also on the kernel k. We give a necessary and sufficient condition. When this condition is satisfied, a functional model can be constructed. Moreover, the characteristic function then is a complete unitary invariant for a suitable class of tuples T.