952 resultados para Rayleigh-Ritz theorem
Resumo:
The widespread growth in the use of smart cards (by banks, transport services, and cell phones, etc) has brought an important fact that must be addressed: the need of tools that can be used to verify such cards, so to guarantee the correctness of their software. As the vast majority of cards that are being developed nowadays use the JavaCard technology as they software layer, the use of the Java Modeling Language (JML) to specify their programs appear as a natural solution. JML is a formal language tailored to Java. It has been inspired by methodologies from Larch and Eiffel, and has been widely adopted as the de facto language when dealing with specification of any Java related program. Various tools that make use of JML have already been developed, covering a wide range of functionalities, such as run time and static checking. But the tools existent so far for static checking are not fully automated, and, those that are, do not offer an adequate level of soundness and completeness. Our objective is to contribute to a series of techniques, that can be used to accomplish a fully automated and confident verification of JavaCard applets. In this work we present the first steps to this. With the use of a software platform comprised by Krakatoa, Why and haRVey, we developed a set of techniques to reduce the size of the theory necessary to verify the specifications. Such techniques have yielded very good results, with gains of almost 100% in all tested cases, and has proved as a valuable technique to be used, not only in this, but in most real world problems related to automatic verification
Resumo:
In this dissertation, after a brief review on the Einstein s General Relativity Theory and its application to the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmological models, we present and discuss the alternative theories of gravity dubbed f(R) gravity. These theories come about when one substitute in the Einstein-Hilbert action the Ricci curvature R by some well behaved nonlinear function f(R). They provide an alternative way to explain the current cosmic acceleration with no need of invoking neither a dark energy component, nor the existence of extra spatial dimensions. In dealing with f(R) gravity, two different variational approaches may be followed, namely the metric and the Palatini formalisms, which lead to very different equations of motion. We briefly describe the metric formalism and then concentrate on the Palatini variational approach to the gravity action. We make a systematic and detailed derivation of the field equations for Palatini f(R) gravity, which generalize the Einsteins equations of General Relativity, and obtain also the generalized Friedmann equations, which can be used for cosmological tests. As an example, using recent compilations of type Ia Supernovae observations, we show how the f(R) = R − fi/Rn class of gravity theories explain the recent observed acceleration of the universe by placing reasonable constraints on the free parameters fi and n. We also examine the question as to whether Palatini f(R) gravity theories permit space-times in which causality, a fundamental issue in any physical theory [22], is violated. As is well known, in General Relativity there are solutions to the viii field equations that have causal anomalies in the form of closed time-like curves, the renowned Gödel model being the best known example of such a solution. Here we show that every perfect-fluid Gödel-type solution of Palatini f(R) gravity with density and pressure p that satisfy the weak energy condition + p 0 is necessarily isometric to the Gödel geometry, demonstrating, therefore, that these theories present causal anomalies in the form of closed time-like curves. This result extends a theorem on Gödel-type models to the framework of Palatini f(R) gravity theory. We derive an expression for a critical radius rc (beyond which causality is violated) for an arbitrary Palatini f(R) theory. The expression makes apparent that the violation of causality depends on the form of f(R) and on the matter content components. We concretely examine the Gödel-type perfect-fluid solutions in the f(R) = R−fi/Rn class of Palatini gravity theories, and show that for positive matter density and for fi and n in the range permitted by the observations, these theories do not admit the Gödel geometry as a perfect-fluid solution of its field equations. In this sense, f(R) gravity theory remedies the causal pathology in the form of closed timelike curves which is allowed in General Relativity. We also examine the violation of causality of Gödel-type by considering a single scalar field as the matter content. For this source, we show that Palatini f(R) gravity gives rise to a unique Gödeltype solution with no violation of causality. Finally, we show that by combining a perfect fluid plus a scalar field as sources of Gödel-type geometries, we obtain both solutions in the form of closed time-like curves, as well as solutions with no violation of causality
Resumo:
Considering a non-relativistic ideal gas, the standard foundations of kinetic theory are investigated in the context of non-gaussian statistical mechanics introduced by Kaniadakis. The new formalism is based on the generalization of the Boltzmann H-theorem and the deduction of Maxwells statistical distribution. The calculated power law distribution is parameterized through a parameter measuring the degree of non-gaussianity. In the limit = 0, the theory of gaussian Maxwell-Boltzmann distribution is recovered. Two physical applications of the non-gaussian effects have been considered. The first one, the -Doppler broadening of spectral lines from an excited gas is obtained from analytical expressions. The second one, a mathematical relationship between the entropic index and the stellar polytropic index is shown by using the thermodynamic formulation for self-gravitational systems
Resumo:
Considering a quantum gas, the foundations of standard thermostatistics are investigated in the context of non-Gaussian statistical mechanics introduced by Tsallis and Kaniadakis. The new formalism is based on the following generalizations: i) Maxwell- Boltzmann-Gibbs entropy and ii) deduction of H-theorem. Based on this investigation, we calculate a new entropy using a generalization of combinatorial analysis based on two different methods of counting. The basic ingredients used in the H-theorem were: a generalized quantum entropy and a generalization of collisional term of Boltzmann equation. The power law distributions are parameterized by parameters q;, measuring the degree of non-Gaussianity of quantum gas. In the limit q
Resumo:
Among several theorems which are taught in basic education some of them can be proved in the classroom and others do not, because the degree of difficulty of its formal proof. A classic example is the Fundamental Theorem of Algebra which is not proved, it is necessary higher-level knowledge in mathematics. In this paper, we justify the validity of this theorem intuitively using the software Geogebra. And, based on [2] we will present a clear formal proof of this theorem that is addressed to school teachers and undergraduate students in mathematics
Resumo:
In this paper we analyze the Euler Relation generally using as a means to visualize the fundamental idea presented manipulation of concrete materials, so that there is greater ease of understanding of the content, expanding learning for secondary students and even fundamental. The study is an introduction to the topic and leads the reader to understand that the notorious Euler Relation if inadequately presented, is not sufficient to establish the existence of a polyhedron. For analyzing some examples, the text inserts the idea of doubt, showing cases where it is not fit enough numbers to validate the Euler Relation. The research also highlights a theorem certainly unfamiliar to many students and teachers to research the polyhedra, presenting some very simple inequalities relating the amounts of edges, vertices and faces of any convex polyhedron, which clearly specifies the conditions and sufficient necessary for us to see, without the need of viewing the existence of the solid screen. And so we can see various polyhedra and facilitate understanding of what we are exposed, we will use Geogebra, dynamic application that combines mathematical concepts of algebra and geometry and can be found through the link http://www.geogebra.org
Resumo:
The Borborema Province, Northeastern Brazil, had its internal structure investigated by different geophysical methods like gravity, magnetics and seismics. Additionally, many geological studies were also carried out to define the structural domains of this province. Despite the plethora of studies, there are still many important open aspects about its evolution. Here, we study the velocity structure of S-wave in the crust using dispersion of surface waves. The dispersion of surface waves allows an estimate of the average thickness of the crust across the region between the stations. The inversion of the velocity structure was carried out using the inter-station dispersion of surface waves of Rayleigh and Love types. The teleseismic events are mainly from the edges of the South and North American plates. The period of data collection occurred between 2007 and 2010 and we selected 7 events with magnitude above 5.0 MW and up to 40 km depth. The difference between the events back-azimuths and the interstation path was not greater than 10. We also know the depth of the Moho, results from Receiver Functions (Novo Barbosa, 2008), and use those as constrains in inversion. Even using different parameterizations of models for the inversion, our results were very similar the mean profiles velocity structure of S-wave. In pairs of stations located in the Cear´a Central Domain Borborema the province, there are ranges of depths for which the velocities of S are very close. Most of the results in the profile near the Moho complicate their interpretation at that depth, coinciding with the geology of the region, where there are many shear zones. In particular, the profile that have the route Potiguar Bacia in inter-station, had low velocities in the crust. We combine these results to the results of gravimetry and magnetometry (Oliveira, 2008) and receptor function (Novo Barbosa, 2008). We finally, the first results on the behavior of the velocity structure of S-wave with depth in the Province Borborema