999 resultados para Piezoelectric material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of organic xenobiotics with soil water-soluble humic material (WSHM) may influence their environmental fate and bioavailability. We utilized bacterial assays (lux-based toxicity and mineralization by Burkholderia sp. RASC) to assess temporal changes in the bioavailability of [14C]-2,4-dichlorophenol (2,4-DCP) in soil water extracts (29.5 μg mL-1 2,4-DCP; 840.2 μg mL-1 organic carbon). HPLC determined and bioavailable concentrations were compared. Gel permeation chromatography (GPC) was used to confirm the association of a fraction (>50%) of [14C]-2,4-DCP with WSHM. Subtle differences in parameters describing 2,4-DCP mineralization curves were recorded for different soil-2,4-DCP contact times. Problems regarding the interpretation of mineralization data when assessing the bioavailability of toxic compounds are discussed. The lux-bioassay revealed a time-dependent reduction in 2,4-DCP bioavailability: after 7 d, less than 20% was bioavailable. However, GPC showed no quantitative difference in the amount of WSHM-associated 2,4-DCP over this time. These data suggest qualitative changes in the nature of the 2,4-DCP-WSHM association and that associated 2,4-DCP may exert a toxic effect. Although GPC distinguished between free- and WSHM-associated 2,4-DCP, it did not resolve the temporal shift in bioavailability revealed by the lux biosensor. These results stress that assessment of risk posed by chemicals must be considered using appropriate biological assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intertwined processes of globalization and capitalism are fundamentally material in expression and are central to understandings of the modern world (however defined). Over the last 50 years, post-medieval archaeologists have engaged directly with the materiality of these broad-scale processes, initially from the standpoint of empirically driven descriptive studies and latterly with more interpretative approaches which challenge and stretch disciplinary boundaries. As later historical archaeology is increasingly characterized by a theoretically and geographically diverse set of practices, insights into the material resonances of globalization and capitalism have become increasingly sophisticated and more broadly relevant to the present day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring of BCR-ABL transcripts has become established practice in the management of chronic myeloid leukemia. However, nucleic acid amplification techniques are prone to variations which limit the reliability of real-time quantitative PCR (RQ-PCR) for clinical decision making, highlighting the need for standardization of assays and reporting of minimal residual disease (MRD) data. We evaluated a lyophilized preparation of a leukemic cell line (K562) as a potential quality control reagent. This was found to be relatively stable, yielding comparable respective levels of ABL, GUS and BCR-ABL transcripts as determined by RQ-PCR before and after accelerated degradation experiments as well as following 5 years storage at -20 degrees C. Vials of freeze-dried cells were sent at ambient temperature to 22 laboratories on four continents, with RQ-PCR analyses detecting BCR-ABL transcripts at levels comparable to those observed in primary patient samples. Our results suggest that freeze-dried cells can be used as quality control reagents with a range of analytical instrumentations and could enable the development of urgently needed international standards simulating clinically relevant levels of MRD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What does material culture tell us about gendered identities and how does gender reveal the meaning of spaces and things?

If we look at the objects that we own, covet and which surround us in our everyday culture, there is a clear connection between ideas about gender and the material world. This book explores the material culture of the past to shed light on historical experiences and identities. Some essays focus on specific objects, such as an eighteenth-century jug or a twentieth-century powder puff, others on broader material environments, such as the sixteenth-century guild or the interior of a twentieth-century pub, while still others focus on the paraphernalia associated with certain actions, such as letter-writing or maintaining eighteenth-century men's hair.

Written by scholars in a range of history-related disciplines, the essays in this book offer exposés of current research methods and interests. These demonstrate to students how a relationship between material culture and gender is being addressed, while also revealing a variety of intellectual approaches and topics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strain effects have a significant role in mediating classic ferroelectric behavior such as polarization switching and domain wall dynamics. These effects are of critical relevance if the ferroelectric order parameter is coupled to strain and is therefore, also ferroelastic. Here, switching spectroscopy piezoresponse force microscopy (SS-PFM) is combined with control of applied tip pressure to exert direct control over the ferroelastic and ferroelectric switching events, a modality otherwise unattainable in traditional PFM. As a proof of concept, stress-mediated SS-PFM is applied toward the study of polarization switching events in a lead zirconate titanate thin film, with a composition near the morphotropic phase boundary with co-existing rhombohedral and tetragonal phases. Under increasing applied pressure, shape modification of local hysteresis loops is observed, consistent with a reduction in the ferroelastic domain variants under increased pressure. These experimental results are further validated by phase field simulations. The technique can be expanded to explore more complex electromechanical responses under applied local pressure, such as probing ferroelectric and ferroelastic piezoelectric nonlinearity as a function of applied pressure, and electro-chemo-mechanical response through electrochemical strain microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The material flow in friction stir spot welding of aluminium to both aluminium and steel has been investigated, using pinless tools in a lap joint geometry. The flow behaviour was revealed experimentally using dissimilar Al alloys of similar strength. The effect on the material flow of tool surface features, welding conditions (rotation speed, plunge depth, dwell time), and the surface state of the steel sheet (un-coated or galvanized) have been systematically studied. A novel kinematic flow model is presented, which successfully predicts the observed layering of the dissimilar Al alloys under a range of conditions. The model and the experimental observations provide a consistent interpretation of the stick-slip conditions at the tool-workpiece interface, addressing an elusive and long-standing issue in the modelling of heat generation in friction stir processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to design granulated iron oxide for the adsorption of heavy metals from wastewater. Polyvinyl acetate (PVAc) was chosen as a suitable binder; as it is water insoluble. Initial experiments on selection of suitable solvent of the polymer were carried out using three solvents namely; methanol, acetone and toluene. Based on the initial tests on product yield and mechanical strength, acetone was selected as the solvent for the polyvinyl acetate binder. Design of experiment was then used to investigate the influence of granulation process variables; impeller speed, binder concentration and liquid to solid ratio on the properties of the granular materials. The response variables in the study were granules mean size, stability in water and granule strength. The results showed that the combination of high impeller speed and high binder concentration favour the formation of strong and stable granules. Results also showed that leaching of the binder into the simulated was water was negligible. Trial adsorption experiments carried out using the strongest and most stable iron oxide granules produced in this work showed removal efficiency of around 70% of synthetic arsenic solutions with initial concentration of 1000 ppb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado em Agricultura Sustentável, apresentada na Escola Superior Agrária de Santarém, Instituto Politécnico de Santarém.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nesta tese, ferroeléctricos relaxor (I dont know uf the order is correct) de base Pb das familias (Pb,La)(Zr,Ti)O3 (PLZT), Pb(Mg1/3,Nb2/3)O3-PbTiO3 (PMN-PT), Pb(Zn1/3,Nb2/3)O3-PbTiO3 (PZN-PT) foram investigados e analisados. As propriedades ferroeléctricas e dieléctricas das amostras foram estudadas por métodos convencionais de macro e localmente por microscopia de força piezoeléctrica (PFM). Nos cerâmicos PLZT 9.75/65/35 o contraste da PFM à escala nanometrica _ foi investigado em função do tamanho e orientação dos grãos. Apurou-se que a intensidade do sinal piezoeléctrico das nanoestruturas diminui com o aumento da temperatura e desaparece a 490 K (La mol. 8%) e 420 K (9,5%). Os ciclos de histerese locais foram obtidos em função da temperatura. A evolução dos parâmetros macroscópicos e locais com a temperatura de superfície sugere um forte efeito de superfície nas transições de fase ferroeléctricas do material investigado. A rugosidade da parede de domínio é determinada por PFM para a estrutura de domínio natural existente neste ferroeléctrico policristalino. Além disso, os domínios ferroeléctricos artificiais foram criados pela aplicação de pulsos eléctricos à ponta do condutor PFM e o tamanho de domínio in-plane foi medido em função da duração do pulso. Todas estas experiências levaram à conclusão de que a parede de domínio em relaxors do tipo PZT é quase uma interface unidimensional. O mecanismo de contraste na superfície de relaxors do tipo PLZT é medido por PFMAs estruturas de domínio versus evolução da profundidade foram estudadas em cristais PZN-4,5%PT, com diferentes orientações através da PFM. Padrões de domínio irregulares com tamanhos típicos de 20-100 nm foram observados nas superfícies com orientação <001> das amostras unpoled?. Pelo contrário, os cortes de cristal <111> exibem domínios regulares de tamanho mícron normal, com os limites do domínio orientados ao longo dos planos cristalográficos permitidos. A existência de nanodomínios em cristais com orientação <001> está provisoriamente (wrong Word) atribuída à natureza relaxor de PZN-PT, onde pequenos grupos polares podem formar-se em coindições de zero-field-cooling (ZFC). Estes nanodomínios são considerados como os núcleos do estado de polarização oposta e podem ser responsáveis pelo menor campo coercitivo para este corte de cristal em particular. No entanto, a histerese local piezoelétrica realizada pelo PFM à escala nanométrica indica uma mudança de comportamento de PZN-PT semelhante para ambas as orientações cristalográficas investigadas. A evolução das estruturas de domínio com polimento abaixo da superfície do cristal foi investigada. O domínio de ramificações e os efeitos de polarização de triagem após o polimento e as medições de temperatura têm sido estudados pela PFM e pela análise SEM. Além disso, verificou-se que a intensidade do sinal piezoeléctrico a partir das estruturas de nanodomínio diminui com o aumento da temperatura, acabando por desaparecer aos 430 K (orientaçáo <111>) e 470 K (orientação <100>). Esta diferença de temperatura nas transições de fase local em cristais de diferentes orientações é explicada pelo forte efeito de superfície na transição da fase ferroelétrica em relaxors.A comutação da polarização em relaxor ergódico e nas fases ferroeléctricas do sistema PMN-PT foram realizadas pela combinação de três métodos, Microscopia de Força Piezoeléctrica, medição de um único ponto de relaxamento eletromecânico e por ultimo mapeamento de espectroscopia de tensão. A dependência do comportamento do relaxamento na amplitude e tempo da tensão de pulso foi encontrada para seguir um comportamento logarítmico universal com uma inclinação quase constante. Este comportamento é indicativo da progressiva população dos estados de relaxamento lento, ao contrário de uma relaxação linear na presença de uma ampla distribuição do tempo de relaxamento. O papel do comportamento de relaxamento, da não-linearidade ferroeléctrica e da heterogeneidade espacial do campo na ponta da sonda de AFM sobre o comportamento do ciclo de histerese é analisada em detalhe. Os ciclos de histerese para ergódica PMN- 10%PT são mostrados como cineticamente limitados, enquanto que no PMN, com maior teor de PT, são observados verdadeiros ciclos de histerese ferroeléctrica com viés de baixa nucleação.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente tese de doutoramento procura focar o vidro como material plástico para a concepção de obras de arte. Os seus alicerces caracterizam-se pelo estudo técnico sobre o uso do vidro e a sua aplicação na realização de obras com pressupostos estéticos e artísticos. Hoje a arte em vidro apresenta-se inovadora e contemporânea, procurando uma componente ligada à pesquisa e à experimentação. Portugal possui uma ampla história ligada à tradição do vidro, em especial ao vitral. No que concerne à sua aplicação na arte contemporânea, assistimos a um renovado interesse por parte de vários artistas. No entanto, quando se trabalha com o vidro, é necessário o artista conhecer e dominar a técnica que utiliza, para assim compreender as potencialidades que o material oferece e empregá-las de acordo com o seu modus operandi. Cria-se uma relação entre a ciência e a arte, uma descoberta e utilização de novos conhecimentos, em que se pretende manter uma relação estreita entre o cientista e o artista através do desenvolvimento de novos materiais, nomeadamente os vidros e esmaltes luminescentes e a adição de óxidos de metais de transição 3d na sua composição. Neste sentido foram desenvolvidos estudos minuciosos sobre a técnica de kilncasting onde se utilizou o vidro sonoro superior produzido no CRISFORM (Centro de Formação Profissional para o Sector da Cristalaria), na Marinha Grande. Assim, verifica-se que as premissas desta tese podem ser divididas em três vertentes: a) Uma contextualização histórica e teórica do panorama artístico do vidro em Portugal; b) Uma componente teórica/prática do estudo do vidro: a ciência do vidro, a sua composição, com a preocupação de utilizar esses conhecimentos para a elaboração de amostras práticas, onde a componente técnica é fundamental para a produção de futuras obras de arte; c) A idealização de obras de arte e a utilização do vidro como material plástico para a sua realização. Na elaboração destas obras procurou-se focar a dicotomia entre transparência versus opacidade, os efeitos cromáticos produzidos por diferentes espessuras e texturas do vidro, assim como da monocromia versus policromia, esta última através do vidro e esmaltes luminescentes. Em suma, na complementaridade laboratório/ateliê, os segredos da matéria abrem novas fronteiras à criatividade estética.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport – defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 μC/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that <001> - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. Polarized Raman analysis of ferroelectric potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) single crystals was performed. For the first time, an evidence is provided that supports the assignment of KNN single crystals structure to the monoclinic symmetry at room temperature. Intensities of A′, A″ and mixed A′+A″ phonons have been theoretically calculated and compared with the experimental data in dependence of crystal rotation, which allowed the precise determination of the Raman tensor coefficients for (non-leaking) modes in monoclinic KNN. In relation to the previous literature, this study clarifies that assigning monoclinic phase is more suitable than the orthorhombic one. In addition, this study is the basis for non-destructive assessments of domain distribution by Raman spectroscopy in KNN-based lead-free ferroelectrics with complex structures. Searching a deeper understanding of the electrical behaviour of both KNN single crystal and polycrystalline materials for the sake of designing optimized KNN materials, a comparative study at the level of charge transport and point defects was carried out by impedance spectroscopy. KNN single crystals showed lower conductivity than polycrystals from room temperature up to 200 ºC, but above this temperature polycrystalline KNN displays lower conductivity. The low temperature (T < 200 ºC) behaviour reflects the different processing conditions of both ceramics and single crystals, which account for less defects prone to charge transport in the case of single crystals. As temperature increases (T > 200 ºC) single crystals become more conductive than polycrystalline samples, in which grain boundaries act as barriers to charge transport. For even higher temperatures the conductivity difference between both is increased due to the contribution of ionic conduction in single crystals. Indeed the values of activation energy calculated to the high temperature range (T > 300 ºC) were 1.60 and 0.97 eV, confirming the charge transport due to ionic conduction and ionized oxygen vacancies in single crystals and polycrystalline KNN, respectively. It is suggested that single crystals with low defects content and improved electromechanical properties could be a better choice for room temperature applications, though at high temperatures less conductive ceramics may be the choice, depending on the targeted use. Aiming at engineering the properties of KNN polycrystals towards the performance of single crystals, the preparation and properties study of (001) – oriented (K0.5Na0.5)0.98Li0.02NbO3 (KNNL) ceramics obtained by templated grain growth (TGG) using KNN single crystals as templates was undertaken. The choice of KNN single crystals templates is related with their better properties and to their unique domain structure which were envisaged as a tool for templating better properties in KNN ceramics too. X-ray diffraction analysis revealed for the templated ceramics a monoclinic structure at room temperature and a Lotgering factor (f) of 40% which confirmed texture development. These textured ceramics exhibit a long range ordered domain pattern consisting of 90º and 180º domains, similar to the one observed in the single crystals. Enhanced dielectric (13017 at TC), ferroelectric (2Pr = 42.8 μC/cm2) and piezoelectric (d33 = 280 pC/N) properties are observed for textured KNNL ceramics as compared to the randomly oriented ones. This behaviour is suggested to be due to the long range ordered domain patterns observed in the textured ceramics. The obtained results as compared with the data previously reported on texture KNN based ceramics confirm that superior properties were found due to ordered repeated domain pattern. This study provides an useful approach towards properties improvement of KNN-based piezoelectric ceramics. Overall, the present results bring a significant contribution to the pool of knowledge on the properties of sodium potassium niobate materials: a relation between the domain patterns and di-, ferro-, and piezo-electric response of single crystals and ceramics was demonstrated and ways of engineering maximised properties in KNN materials, for example by texturing were established. This contribution is envisaged to have broad implications for the expanded use of KNN over the alternative lead-based materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a research project by practice, which firstly develops a new material invention derived from natural fibres extracted from waste pineapple leaves; secondly it articulates the contemporary designer’s role in facilitating sustainable solutions through: Insights from my own material invention, PiñatexTM, which integrates the materiality of design with the immateriality of concepts and values Developing a visual model of mapping I began with these questions: ‘What are the challenges in seeking to make a new and sustainable material from the waste products of pineapple agriculture in the Philippines?’ and ‘How can a design practice link elements of materiality (artifacts) with immaterial elements (value systems) in order to improve sustainable social and economic development?’ Significant influences have been the work of Papanek1 (2003), Hawken2 (1999) and Abouleish3 (2008) and in particular the ethical business model initiated by McDonough and Braungart in Cradle to Cradle®4 (2002). My own research project is inspired by the Cradle to Cradle® model. It proposes the development of a new material, PiñatexTM which is derived from natural fibres extracted from waste pineapple leaves and could be used in a wide variety of products that are currently fabricated in leather or petroleum-based materials. The methods have comprised: Contextual reviews; case studies (SEKEM, Cradle to Cradle® and Gawad Kalinga); practical experiments in the field of natural fibres, chemistry, product development, manufacturing and prototyping, leading to an invention and a theoretical model of mapping. In addition, collaboration has taken place across scientific, technological, social, ecological, academic and business fields. The outcome is a new material based on the synchronicity between the pineapple fibres, polymers, resins and coatings specially formulated. The invention of the new material that I developed as a central part of this research by practice has a patent in the national phase (PCT/GB 2011/000802) and is in the first stages of manufacturing, commercial testing and further design input (Summer 2014). The contribution to knowledge is firstly the material, PiñatexTM, which exhibits certain key qualities, namely environmentally non-toxic, biodegradable, income-generating potential and marketability. This is alongside its intrinsic qualities as a textile product: aesthetic potential, durability and stability, which will make it suitable for the accessories, interiors and furnishing markets. The theoretical mapping system Upstream and Downstream forms a secondary contribution.