968 resultados para Partial functional differential equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove that the spatial discretization of a one dimensional system of parabolic equations. with suitably small step size, contains exactly the same asymptotic dynamics as the continuous problem. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the family of singularly nonautonomous plate equation with structural dampingu(tt) + a(t, x)u(t) - Delta u(t) + (-Delta)(2)(u) + lambda u = f(u),in a bounded domain Omega subset of R(n), with Navier boundary conditions. When the nonlinearity f is dissipative we show that this problem is globally well posed in H(0)(2)(Omega) x L(2)(Omega) and has a family of pullback attractors which is upper-semicontinuous under small perturbations of the damping a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we deal with discontinuous vector fields on R-2 and we prove that the analysis of their local behavior around a typical singularity can be treated via singular perturbation. The regularization process developed by Sotomayor and Teixeira is crucial for the development of this work. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Singular perturbations problems in dimension three which are approximations of discontinuous vector fields are studied in this paper. The main result states that the regularization process developed by Sotomayor and Teixeira produces a singular problem for which the discontinuous set is a center manifold. Moreover, the definition of' sliding vector field coincides with the reduced problem of the corresponding singular problem for a class of vector fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A relativistic treatment of the deuteron and its observables based on a two-body Dirac (Breit) equation, with phenomenological interactions, associated to one-boson exchanges with cutoff masses, is presented. The 16-component wave function for the deuteron (J(pi) = 1+) solution contains four independent radial functions which obey a system of four coupled differential equations of first order. This radial system is numerically integrated, from infinity to the origin, by fixing the value of the deuteron binding energy and using appropriate boundary conditions at infinity. Specific examples of mixtures containing scalar, pseudoscalar and vector like terms are discussed in some detail and several observables of the deuteron are calculated. Our treatment differs from more conventional ones in that nonrelativistic reductions of the order c-2 are not used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta -lactam antibiotics, such as a cephalosporin C fed-batch p recess in an aerated stirred-tank bioreactor with free cells of Cepha-losporium acremonium or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch profess. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations, For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, eel concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data,and based on the experimental data and the mathematical model an optimal mass flow rate to maximize the bioprocess productivity could be proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of water and sugars in half-fresh apples dehydrated in sucrose solutions (30% and 50% w/w, 27 degrees C) for 2, 4 and 8 h, was determined. Each half was sliced as from the exposed surface. The density, water and sugar contents were determined for each piece. A mathematical model was fitted to the experimental data of the water and sucrose contents considering the overall flux and tissue shrinkage. A numerical method of finite differences permitted the calculation of the effective diffusion coefficients as a function of concentration, using material coordinates and integrating the two differential equations (for water and sucrose) simultaneously. The coefficients obtained were one or even two orders of magnitude lower than those for pure solutions and presented unusual concentration dependence. The behaviour of the apple tissue was also studied using light microscopy techniques to obtain images of the osmotically treated pieces (20%, 30% and 50% w/w sucrose solutions for 2, 4 and 8 h). (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the Hamilton-Jacobi formulation for first-order constrained systems has been developed. In such formalism the equations of motion are written as total differential equations in many variables. We generalize the Hamilton-Jacobi formulation for singular systems with second-order Lagrangians and apply this new formulation to Podolsky electrodynamics, comparing with the results obtained through Dirac's method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical simulation of the mixmaster universe serves the purpose of suggesting two kinds of results. The intrinsic time evolution, during contraction, will be seen to be nonchaotic. This is a necessary feature of relativistic cosmological models undergoing this kind of motion. The mixmaster model also provides a clue on how to define chaoticity for systems described by nonautonomous sets of differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Half-fresh apples were immersed in sucrose solution (50% w/w, 27 degrees C) during different times of exposition (2, 4, and 8 h). Then each fruit was sliced from the transversal exposed surface. Density, water, and sugar content were determined for each slice. A mathematical model was fitted to experimental data of water and sucrose content considering the global flux and the tissue shrinkage. By numerical analysis, the binary effective diffusion coefficients as a function of concentration were calculated, using material coordinates and integrating simultaneously two differential equations (for water and sucrose). The coefficients obtained are one or even two orders of magnitude lower than the ones for pure solutions and present an unusual concentration dependence. This comparison shows the influence of the tissue resistance to the diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We confirm a conjecture of Mello and Coelho [Phys. Lett. A 373 (2009) 1116] concerning the existence of centers on local center manifolds at equilibria of the Lu system of differential equations on R(3). Our proof shows that the local center manifolds are algebraic ruled surfaces, and are unique. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-body Dirac(Breit) equation with potentials associated to one-boson-exchanges with cutoff masses is solved for the deuteron and its observables calculated. The 16-component wave-function for the Jπ = 1+ state contains four independent radial functions which satisfy a system of four coupled differential equations of first order. This system is numerically integrated, from infinity towards the origin, by fixing the value of the deuteron binding energy and imposing appropriate boundary conditions at infinity. For the exchange potential of the pion, a mixture of direct plus derivative couplings to the nucleon is considered. We varied the pion-nucleon coupling constant, and the best results of our calculations agree with the lower values recently determined for this constant.