968 resultados para Neutral equation
Resumo:
In this paper, we prove the exponential decay as time goes to infinity of regular solutions of the problem for the Kirchhoff wave equation with nonlocal condition and weak dampingu(tt) - M (\\delU\\(2)(2)) Deltau + integral(0)(t) g(t - s)Deltau(.,s) ds + alphau(t) = 0, in (Q) over cap,where (Q) over cap is a noncylindrical domain of Rn+1 (n greater than or equal to 1) with the lateral boundary (&USigma;) over cap and alpha is a positive constant. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We consider flavor changing neutral current effects coming from the Z' exchange in 3-3-1 models. We show that the mass of this extra neutral vector boson may be less than 2 TeV and discuss the problem of quark family discrimination.
Resumo:
We report the exact fundamental solution for Kramers equation associated to a Brownian gas of charged particles, under the influence of homogeneous (spatially uniform) otherwise arbitrary, external mechanical, electrical and magnetic fields. Some applications are presented, namely the hydrothermodynamical picture for Brownian motion in the long-time regime. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Vertex corrections are taken into account in the Schwinger-Dyson equation for the nucleon propagator in a relativistic field theory of fermions and mesons. The usual Hartree-Fock approximation for the nucleon propagator is known to produce the appearance of complex (ghost) poles which violate basic theorems of quantum field theory. In a theory with vector mesons there are vertex corrections that produce a strongly damped vertex function in the ultraviolet. One set of such corrections is known as the Sudakov form factor in quantum electrodynamics. When the Sudakov form factor generated by massive neutral vector mesons is included in the Hartree-Fock approximation to the Schwinger-Dyson equation for the nucleon propagator, the ghost poles disappear and consistency with basic requirements of quantum field theory is recovered.
Resumo:
Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.
Resumo:
Several neutral solutes, ranging in size from methanol to a tetrasaccharide, stachyose, are shown to stabilize the left-handed Z form of the methylated polynucleotide poly(dG-m(5)dC). The action of these solutes is consistent with an osmotic stress, that is, with their effect on water chemical potentials coupled to a difference in the number of-associated water molecules between the B and Z conformations. The apparent difference in hydration between the two forms is, however, dependent on the particular solute used to probe the reaction. The effect of solutes is not consistent either with a direct binding of solute or with an indirect effect on electrostatics or ion binding through changes in the solution dielectric constant. The interplay of NaCl and neutral solute in modulating the B-Z transition suggests that salt also could be stabilizing the Z form through an osmotic stress.
Resumo:
The Poisson-Boltzmann equation (PBE), with specific ion-surface interactions and a cell model, was used to calculate the electrostatic properties of aqueous solutions containing vesicles of ionic amphiphiles. Vesicles are assumed to be water- and ion-permeable hollow spheres and specific ion adsorption at the surfaces was calculated using a Volmer isotherm. We solved the PBE numerically for a range of amphiphile and salt concentrations (up to 0.1 M) and calculated co-ion and counterion distributions in the inside and outside of vesicles as well as the fields and electrical potentials. The calculations yield results that are consistent with measured values for vesicles of synthetic amphiphiles.
Resumo:
We study the Glashow-Iliopoulos-Maiani mechanism for flavor-changing neutral-current suppression in both the gauge and Higgs sectors, for models with SU(3)L X U(1)N gauge symmetry. The models differ from one another only with respect to the representation content. The main features of these models are that in order to cancel the triangle anomalies the number of families must be divisible by three (the number of colors) and that the lepton number is violated by some lepton-gauge bosons and lepton-scalar interactions.
Resumo:
A relativistic treatment of the deuteron and its observables based on a two-body Dirac (Breit) equation, with phenomenological interactions, associated to one-boson exchanges with cutoff masses, is presented. The 16-component wave function for the deuteron (J(pi) = 1+) solution contains four independent radial functions which obey a system of four coupled differential equations of first order. This radial system is numerically integrated, from infinity to the origin, by fixing the value of the deuteron binding energy and using appropriate boundary conditions at infinity. Specific examples of mixtures containing scalar, pseudoscalar and vector like terms are discussed in some detail and several observables of the deuteron are calculated. Our treatment differs from more conventional ones in that nonrelativistic reductions of the order c-2 are not used.
Resumo:
We study exact boundary controllability for a two-dimensional wave equation in a region which is an angular sector of a circle or an angular sector of an annular region. The control, of Neumann type, acts on the curved part of the boundary, while in the straight part we impose homogeneous Dirichlet boundary condition. The initial state has finite energy and the control is square integrable. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF(4) 0.1 mol L-1) for indole (-2.27 V) and carbazole (-2.67 V) versus Ag vertical bar AgCl vertical bar KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L-1 and a limit of detection (L.O.D) of 7.48 and 2.66 mu g L-1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 +/- 0.3 and 64.6 +/- 0.9 mg L-1 and in spiked diesel samples were 9.29 +/- 1 and 142 +/- 1 mg L-1, respectively. The recovery was evaluated and the results shown the values of 88.9 +/- 0.4 and 90.2 +/- 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests. (C) 2007 Elsevier B.V. All rights reserved.