998 resultados para Multiclass prediction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach to multiclass tumor classification using Artificial Neural Networks (ANNs) was introduced in a recent paper cite{Khan2001}. The method successfully classified and diagnosed small, round blue cell tumors (SRBCTs) of childhood into four distinct categories, neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS), using cDNA gene expression profiles of samples that included both tumor biopsy material and cell lines. We report that using an approach similar to the one reported by Yeang et al cite{Yeang2001}, i.e. multiclass classification by combining outputs of binary classifiers, we achieved equal accuracy with much fewer features. We report the performances of 3 binary classifiers (k-nearest neighbors (kNN), weighted-voting (WV), and support vector machines (SVM)) with 3 feature selection techniques (Golub's Signal to Noise (SN) ratios cite{Golub99}, Fisher scores (FSc) and Mukherjee's SVM feature selection (SVMFS))cite{Sayan98}.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare Naive Bayes and Support Vector Machines on the task of multiclass text classification. Using a variety of approaches to combine the underlying binary classifiers, we find that SVMs substantially outperform Naive Bayes. We present full multiclass results on two well-known text data sets, including the lowest error to date on both data sets. We develop a new indicator of binary performance to show that the SVM's lower multiclass error is a result of its improved binary performance. Furthermore, we demonstrate and explore the surprising result that one-vs-all classification performs favorably compared to other approaches even though it has no error-correcting properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We contribute a quantitative and systematic model to capture etch non-uniformity in deep reactive ion etch of microelectromechanical systems (MEMS) devices. Deep reactive ion etch is commonly used in MEMS fabrication where high-aspect ratio features are to be produced in silicon. It is typical for many supposedly identical devices, perhaps of diameter 10 mm, to be etched simultaneously into one silicon wafer of diameter 150 mm. Etch non-uniformity depends on uneven distributions of ion and neutral species at the wafer level, and on local consumption of those species at the device, or die, level. An ion–neutral synergism model is constructed from data obtained from etching several layouts of differing pattern opening densities. Such a model is used to predict wafer-level variation with an r.m.s. error below 3%. This model is combined with a die-level model, which we have reported previously, on a MEMS layout. The two-level model is shown to enable prediction of both within-die and wafer-scale etch rate variation for arbitrary wafer loadings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the difficulty in the insulin dosage selection and the problem of hyper- and hypoglycaemia episodes in type 1 diabetes, dosage-aid systems appear as tremendously helpful for these patients. A model-based approach to this problem must unavoidably consider uncertainty sources such as the large intra-patient variability and food intake. This work addresses the prediction of glycaemia for a given insulin therapy face to parametric and input uncertainty, by means of modal interval analysis. As result, a band containing all possible glucose excursions suffered by the patient for the given uncertainty is obtained. From it, a safer prediction of possible hyper- and hypoglycaemia episodes can be calculated

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An emerging consensus in cognitive science views the biological brain as a hierarchically-organized predictive processing system. This is a system in which higher-order regions are continuously attempting to predict the activity of lower-order regions at a variety of (increasingly abstract) spatial and temporal scales. The brain is thus revealed as a hierarchical prediction machine that is constantly engaged in the effort to predict the flow of information originating from the sensory surfaces. Such a view seems to afford a great deal of explanatory leverage when it comes to a broad swathe of seemingly disparate psychological phenomena (e.g., learning, memory, perception, action, emotion, planning, reason, imagination, and conscious experience). In the most positive case, the predictive processing story seems to provide our first glimpse at what a unified (computationally-tractable and neurobiological plausible) account of human psychology might look like. This obviously marks out one reason why such models should be the focus of current empirical and theoretical attention. Another reason, however, is rooted in the potential of such models to advance the current state-of-the-art in machine intelligence and machine learning. Interestingly, the vision of the brain as a hierarchical prediction machine is one that establishes contact with work that goes under the heading of 'deep learning'. Deep learning systems thus often attempt to make use of predictive processing schemes and (increasingly abstract) generative models as a means of supporting the analysis of large data sets. But are such computational systems sufficient (by themselves) to provide a route to general human-level analytic capabilities? I will argue that they are not and that closer attention to a broader range of forces and factors (many of which are not confined to the neural realm) may be required to understand what it is that gives human cognition its distinctive (and largely unique) flavour. The vision that emerges is one of 'homomimetic deep learning systems', systems that situate a hierarchically-organized predictive processing core within a larger nexus of developmental, behavioural, symbolic, technological and social influences. Relative to that vision, I suggest that we should see the Web as a form of 'cognitive ecology', one that is as much involved with the transformation of machine intelligence as it is with the progressive reshaping of our own cognitive capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To establish a prediction model of the degree of disability in adults with Spinal CordInjury (SCI ) based on the use of the WHO-DAS II . Methods: The disability degree was correlatedwith three variable groups: clinical, sociodemographic and those related with rehabilitation services.A model of multiple linear regression was built to predict disability. 45 people with sci exhibitingdiverse etiology, neurological level and completeness participated. Patients were older than 18 andthey had more than a six-month post-injury. The WHO-DAS II and the ASIA impairment scale(AIS ) were used. Results: Variables that evidenced a significant relationship with disability were thefollowing: occupational situation, type of affiliation to the public health care system, injury evolutiontime, neurological level, partial preservation zone, ais motor and sensory scores and number ofclinical complications during the last year. Complications significantly associated to disability werejoint pain, urinary infections, intestinal problems and autonomic disreflexia. None of the variablesrelated to rehabilitation services showed significant association with disability. The disability degreeexhibited significant differences in favor of the groups that received the following services: assistivedevices supply and vocational, job or educational counseling. Conclusions: The best predictiondisability model in adults with sci with more than six months post-injury was built with variablesof injury evolution time, AIS sensory score and injury-related unemployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-specific Occupational Low Back Pain (NOLBP) is a health condition that generates a high absenteeism and disability. Due to multifactorial causes is difficult to determine accurate diagnosis and prognosis. The clinical prediction of NOLBP is identified as a series of models that integrate a multivariate analysis to determine early diagnosis, course, and occupational impact of this health condition. Objective: to identify predictor factors of NOLBP, and the type of material referred to in the scientific evidence and establish the scopes of the prediction. Materials and method: the title search was conducted in the databases PubMed, Science Direct, and Ebsco Springer, between1985 and 2012. The selected articles were classified through a bibliometric analysis allowing to define the most relevant ones. Results: 101 titles met the established criteria, but only 43 metthe purpose of the review. As for NOLBP prediction, the studies varied in relation to the factors for example: diagnosis, transition of lumbar pain from acute to chronic, absenteeism from work, disability and return to work. Conclusion: clinical prediction is considered as a strategic to determine course and prognostic of NOLBP, and to determine the characteristics that increase the risk of chronicity in workers with this health condition. Likewise, clinical prediction rules are tools that aim to facilitate decision making about the evaluation, diagnosis, prognosis and intervention for low back pain, which should incorporate risk factors of physical, psychological and social.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen tomado de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The control and prediction of wastewater treatment plants poses an important goal: to avoid breaking the environmental balance by always keeping the system in stable operating conditions. It is known that qualitative information — coming from microscopic examinations and subjective remarks — has a deep influence on the activated sludge process. In particular, on the total amount of effluent suspended solids, one of the measures of overall plant performance. The search for an input–output model of this variable and the prediction of sudden increases (bulking episodes) is thus a central concern to ensure the fulfillment of current discharge limitations. Unfortunately, the strong interrelation between variables, their heterogeneity and the very high amount of missing information makes the use of traditional techniques difficult, or even impossible. Through the combined use of several methods — rough set theory and artificial neural networks, mainly — reasonable prediction models are found, which also serve to show the different importance of variables and provide insight into the process dynamics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis I propose a novel method to estimate the dose and injection-to-meal time for low-risk intensive insulin therapy. This dosage-aid system uses an optimization algorithm to determine the insulin dose and injection-to-meal time that minimizes the risk of postprandial hyper- and hypoglycaemia in type 1 diabetic patients. To this end, the algorithm applies a methodology that quantifies the risk of experiencing different grades of hypo- or hyperglycaemia in the postprandial state induced by insulin therapy according to an individual patient’s parameters. This methodology is based on modal interval analysis (MIA). Applying MIA, the postprandial glucose level is predicted with consideration of intra-patient variability and other sources of uncertainty. A worst-case approach is then used to calculate the risk index. In this way, a safer prediction of possible hyper- and hypoglycaemic episodes induced by the insulin therapy tested can be calculated in terms of these uncertainties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of humidity observations on forecast skill is explored by producing a series of global forecasts using initial data derived from the ERA-40 reanalyses system, in which all humidity data have been removed during the data assimilation. The new forecasts have been compared with the original ERA-40 analyses and forecasts made from them. Both sets of forecasts show virtually identical prediction skill in the extratropics and the tropics. Differences between the forecasts are small and undergo characteristic amplification rate. There are larger differences in temperature and geopotential in the tropics but the differences are small-scale and unstructured and have no noticeable effect on the skill of the wind forecasts. The results highlight the current very limited impact of the humidity observations, used to produce the initial state, on the forecasts.