1000 resultados para Milk-clotting enzyme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high sensitivity that can be attained using a bienzymatic system and mediated by the redox polymer [Os(bpy)2ClPyCH2NHpoly(allylamine)] (Os-PAA), has been verified by on-line interfacing of a rotating bioreactor and continuous-flow/stopped-flow/continuous-flow processing. When the hydrogen peroxide formed by LOx layer reaches the inner layer, the electronic flow between the immobilized peroxidase and the electrode surface produces a current, proportional to lactate concentration. The determination of lactate was possible with a limit of detection of 5 nmol l−1 in the processing of as many as 30 samples per hour. This arrangement allows working in undiluted milk samples with a good stability and reproducibility. Horseradish peroxidase [EC 1.11.1.7] and Os-PAA were covalently immobilized on the glassy carbon electrode surface (upper cell body), lactate oxidase [EC 1.1.3.x] was immobilized on a disk that can be rotated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose oxidase (GOx) is an important enzyme with great potential application for enzymatic sensing of glucose, in implantable biofuel cells for powering of medical devices in vivo and for large-scale biofuel cells for distributed energy generation. For these applications, immobilisation of GOx and direct transfer of electrons from the enzyme to an electrode material is required. This paper describes synthesis of conducting polymer (CP) structures in which GOx has been entrained such that direct electron transfer is possible between GOx and the CP. CP/enzyme composites prepared by other means show no evidence of such “wiring”. These materials therefore show promise for mediator-less electronic connection of GOx into easily produced electrodes for biosensing or biofuel cell applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin (Ang) I-converting enzyme (ACE) is a member of the gluzincin family of zinc metalloproteinases that contains two homologous catalytic domains. Both the N- and C-terminal domains are peptidyl-dipeptidases that catalyze Ang II formation and bradykinin degradation. Multiple sequence alignment was used to predict His1089 as the catalytic residue in human ACE C-domain that, by analogy with the prototypical gluzincin, thermolysin, stabilizes the scissile carbonyl bond through a hydrogen bond during transition state binding. Site-directed mutagenesis was used to change His1089 to Ala or Leu. At pH 7.5, with Ang I as substrate, kcat/Km values for these Ala and Leu mutants were 430 and 4,000-fold lower, respectively, compared with wild-type enzyme and were mainly due to a decrease in catalytic rate (kcat) with minor effects on ground state substrate binding (Km). A 120,000-fold decrease in the binding of lisinopril, a proposed transition state mimic, was also observed with the His1089 --> Ala mutation. ACE C-domain-dependent cleavage of AcAFAA showed a pH optimum of 8.2. H1089A has a pH optimum of 5.5 with no pH dependence of its catalytic activity in the range 6.5-10.5, indicating that the His1089 side chain allows ACE to function as an alkaline peptidyl-dipeptidase. Since transition state mutants of other gluzincins show pH optima shifts toward the alkaline, this effect of His1089 on the ACE pH optimum and its ability to influence transition state binding of the sulfhydryl inhibitor captopril indicate that the catalytic mechanism of ACE is distinct from that of other gluzincins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin (Ang) I-converting enzyme (ACE) is a Zn2+ metalloprotease with two homologous catalytic domains. Both the N- and C-terminal domains are peptidyl dipeptidases. Hydrolysis by ACE of its decapeptide substrate Ang I is increased by Cl−, but the molecular mechanism of this regulation is unclear. A search for single substitutions to Gln among all conserved basic residues (Lys/Arg) in human ACE C-domain identified R1098Q as the sole mutant that lacked Cl− dependence. Cl−dependence is also lost when the equivalent Arg in the N-domain, Arg500, is substituted with Gln. The Arg1098 to Lys substitution reduced Cl− binding affinity by ∼100-fold. In the absence of Cl−, substrate binding affinity (1/K m) of and catalytic efficiency (k cat/K m) for Ang I hydrolysis are increased 6.9- and 32-fold, respectively, by the Arg1098 to Gln substitution, and are similar (<2-fold difference) to the respective wild-type C-domain catalytic constants in the presence of optimal [Cl−]. The Arg1098 to Gln substitution also eliminates Cl− dependence for hydrolysis of tetrapeptide substrates, but activity toward these substrates is similar to that of the wild-type C-domain in the absence of Cl−. These findings indicate that: 1) Arg1098 is a critical residue of the C-domain Cl−-binding site and 2) a basic side chain is necessary for Cl− dependence. For tetrapeptide substrates, the inability of R1098Q to recreate the high affinity state generated by the Cl−-C-domain interaction suggests that substrate interactions with the enzyme-bound Cl− are much more important for the hydrolysis of short substrates than for Ang I. Since Cl− concentrations are saturating under physiological conditions and Arg1098 is not critical for Ang I hydrolysis, we speculate that the evolutionary pressure for the maintenance of the Cl−-binding site is its ability to allow cleavage of short cognate peptide substrates at high catalytic efficiencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Milk sialoglycoconjugates can protect the gastrointestinal tract of the suckling neonate by competitively binding to invading pathogens and promoting growth of beneficial flora, and their potential role in postnatal brain development is of particular interest in human infant nutrition. Although the concentration and the distribution of sialoglycoconjugates have been extensively studied in the milk of various species, the investigation of sialyltransferase gene expression in the mammary gland, in the context of lactation, has been limited. The sialyltransferase enzyme ST6Gal I transfers sialic acid from CMP-sialic acid to type 2 (Galβ1,4GlcNAc) free disaccharides or the termini of N- or O-linked oligosaccharides using an α2,6-linkage. Expression of the ST6Gal I gene is primarily regulated at the level of transcription through the use of several cell and development- specific promoters, producing transcripts with divergent 5′ untranslated regions (UTR). In the mouse mammary gland, the novel 5′UTR exon (L) appears to be associated with a drastic increase in ST6Gal I gene expression during lactation. We find that rats also possess an exon (L), suggesting conservation of this regulatory mechanism in rodents. In contrast, an exon (L)-containing transcript was not detected in the lactating bovine or human mammary gland. We also observed a trend of increasing ST6Gal I gene expression in the bovine mammary gland, culminating in involution. This is in contrast to species such as mice where the greatest change in ST6Gal I gene expression occurs between pregnancy and lactation, suggesting different roles in rodents vs. other mammals for α2,6-sialylated oligosaccharides present in milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The renin–angiotensin system (RAS) is functional within adipose tissue and angiotensin II, the active component of RAS, has been implicated in adipose tissue hypertrophy and insulin resistance. In this study, captopril, an angiotensin converting enzyme (ACE) inhibitor that prevents angiotensin II formation, was used to study the development of diet-induced obesity and insulin resistance in obesity prone C57BL/6J mice. The mice were fed a high fat diet (w/w 21% fat) and allowed access to either water or water with captopril added (0.2 mg/ml). Body weight was recorded weekly and water and food intake daily. Glucose tolerance was determined after 11–12 weeks. On completion of the study (after 16 weeks of treatment), the mice were killed and kidney, liver, epididymal fat and extensor digitorum longus muscle (EDL) were weighed. Blood samples were collected and plasma analysed for metabolites and hormones. Captopril treatment decreased body weight in the first 2 weeks of treatment. Food intake of captopril-treated mice was similar to control mice prior to weight loss and was decreased after weight loss. Glucose tolerance was improved in captopril-treated mice. Captopril-treated mice had less epididymal fat than control mice. Relative to body weight, captopril-treated mice had increased EDL weight. Relative to control mice, mice administered captopril had a higher plasma concentration of adiponectin and lower concentrations of leptin and non-esterified fatty acids (NEFA). The results indicate that captopril both induced weight loss and improved insulin sensitivity. Thus, captopril may eventually be used for the treatment of obesity and Type 2 diabetes.