963 resultados para Measurement by laser beam
Resumo:
This aim of the present study was to evaluate the pulp chamber penetration of 35% hydrogen peroxide activated by LED (light-emitting diode) or Nd:YAG laser in bovine teeth, after an in-office bleaching technique. Forty-eight bovine lateral incisors were divided into four groups, acetate buffer was placed into the pulp chamber and bleaching agent was applied as follows: for group A (n = 12), activation was performed by LED; for group B (n = 12), activation was performed by Nd:YAG laser (60 mJ, 20 Hz); group C (n = 12) received no light or laser activation; and the control group (n = 12) received no bleaching gel application or light or laser activation. The acetate buffer solution was transferred to a glass tube and Leuco Crystal Violet and horseradish peroxidase were added, producing a blue solution. The optical density of this solution was determined spectrophotometrically and converted into microgram equivalents of hydrogen peroxide. The results were analysed using ANOVA and Tukey's test (5%). It was verified that the effect of activation was significant, as groups activated by LED or laser presented greater hydrogen peroxide penetration into the pulp chamber (0.499 +/- 0.622 microg) compared with groups that were not (0.198 +/- 0.218 microg). There was no statistically significant difference in the penetration of hydrogen peroxide into the pulp chamber between the two types of activation (LED or laser). The results suggest that activation by laser or LED caused an increase in hydrogen peroxide penetration into the pulp chamber.
Resumo:
Objective: The objective of this study was to evaluate the effect of Er: YAG laser on the formation of CaF2, after the application of acidulated phosphate fluoride (APF), and its influence on the anti-cariogenic action in human dental enamel. Background Data: Er:YAG laser was designed to promote ablation of the enamel. However, the possibility of using this energy to increase the enamel's resistance to caries has hardly been explored, and neither has its interaction with the use of fluorides. Materials and Methods: One hundred and twenty blocks of enamel were allocated to four groups of 30 blocks each: (1) C, control group; (2) Er:YAG, laser; (3) APF; and (4) Er:YAG+APF. Of these, 80 blocks were submitted to pH cycling for 14 days. In the other 40 blocks, fluoride (CaF2) was measured before cycling. After pH cycling, surface microhardness (SMH), microhardness in cross-section (converted to mineral contents % vol. min.), and fluoride after cycling (40 blocks) were also determined. Results: SMH decreased in all groups. The control group showed the highest decrease, and Er:YAG+APF showed the lowest decrease (p < 0.05). Groups APF and Er:YAG showed the same results (p > 0.05). Mineral content at depths 10, 20, and 40 μm was lower in the control and Er:YAG groups, and higher in groups APF and Er:YAG+APF. CaF2 (μgF/cm2) deposited before pH cycling was higher in the APF group when compared to the Er:YAG+APF group. Control and Er:YAG groups showed the lowest values (p > 0.05). Conclusion: It was concluded that Er:YAG laser influenced the deposition of CaF2 on the enamel and showed a superficial anti-cariogenic action, but not in depth.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
The aim of this study was to determine the influence of thickness and aging on the intrinsic fluorescence of sealing materials and their ability to block fluorescence from the underlying surface as assessed using a laser fluorescence device. Cavities of 0.5 mm and 1 mm depth were drilled into acrylic boards which were placed over two surfaces with different fluorescence properties: a low-fluorescence surface, to assess the intrinsic fluorescence of the sealing materials, and a high-fluorescence surface, to assess the fluorescence-blocking ability of the sealing materials. Ten cavities of each depth were filled with different sealing materials: Adper Scotchbond Multi-Purpose, Adper Single Bond 2, FluroShield, Conseal f and UltraSeal XT Plus. Fluorescence was measured with a DIAGNOdent pen at five different time points: empty cavity, after polymerization, and 1 day, 1 week and 1 month after filling. The individual values after polymerization, as well as the area under the curve for the different periods were submitted to ANOVA and the Tukey test (p < 0.05). At 0.5 mm, Scotchbond, FluroShield and UltraSeal showed insignificant changes in intrinsic fluorescence with aging and lower fluorescence after polymerization than Single Bond and Conseal. At 1 mm, Scotchbond and FluroShield showed the lowest intrinsic fluorescence, but only Scotchbond showed no chagnes in fluorescence with aging. At both depths, Scotchbond blocked significantly less fluorescence. All sealing materials blocked more fluorescence when applied to a depth of 1 mm. At 0.5 mm, fissure sealants blocked more fluorescence than adhesives, and did not show significant changes with aging. Scotchbond had the least affect on the fluorescence from the underlying surface and would probably have the least affect on the monitoring of sealed dental caries by laser fluorescence.
Resumo:
The present article discusses an atrophic maxilla reconstruction with iliac crest bone block and particulate grafts and dental implants. Onlay block grafts were used to restore bone volume of the anterior maxilla, whereas bilateral sinus floor augmentation was performed using a particulate graft. Ten months after the grafting surgery, 9 dental implants were placed to rehabilitate the case. Results of a 7-year follow-up were obtained clinically and by cone beam computed tomographic images.
Resumo:
Arthritis of the knee is the most common type of joint inflammatory disorder and it is associated with pain and inflammation of the joint capsule. Few studies address the effects of the 810-nm laser in such conditions. Here we investigated the effects of low-level laser therapy (LLLT; infrared, 810-nm) in experimentally induced rat knee inflammation. Thirty male Wistar rats (230-250 g) were anesthetized and injected with carrageenan by an intra-articular route. After 6 and 12 h, all animals were killed by CO(2) inhalation and the articular cavity was washed for cellular and biochemical analysis. Articular tissue was carefully removed for real-time PCR analysis in order to evaluate COX-1 and COX-2 expression. LLLT was able to significantly inhibit the total number of leukocytes, as well as the myeloperoxidase activity with 1, 3, and 6 J (Joules) of energy. This result was corroborated by cell counting showing the reduction of polymorphonuclear cells at the inflammatory site. Vascular extravasation was significantly inhibited at the higher dose of energy of 10 J. Both COX-1 and 2 gene expression were significantly enhanced by laser irradiation while PGE(2) production was inhibited. Low-level laser therapy operating at 810 nm markedly reduced inflammatory signs of inflammation but increased COX-1 and 2 gene expression. Further studies are necessary to investigate the possible production of antiinflammatory mediators by COX enzymes induced by laser irradiation in knee inflammation.
Resumo:
Temperature changes caused by laser irradiation can promote damage to the surrounding dental tissues. In this study, we evaluated the temperature changes of recently extracted human mandibular incisors during intracanal irradiation with an 810-nm diode laser at different settings. Fifty mandibular incisors were enlarged up to an apical size of ISO No. 40 file. After the final rinse with 17% ethylenediaminetetraacetic acid, 0.2% lauryl sodium sulfate biologic detergent, and sterile water, samples were irradiated with circular movements from apex to crown through five different settings of output power (1.5, 2.0, 2.5, 3.0, and 3.5 W) in continuous mode. The temperature changes were measured on both sides of the apical and middle root thirds using two thermopar devices. A temperature increase of 7 degrees C was considered acceptable as a safe threshold when applying the diode laser. Results: The results showed that only 3.5-W output power increased the outer surface temperature above the critical value. Conclusion: The recommended output power can be stipulated as equal to or less than 3 W to avoid overheating during diode laser irradiation on thin dentin walls. (c) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.1.015006]
Resumo:
Aiming to compare the effect of different light sources for dental bleaching on vascular permeability of dental pulps, forty-eight incisors were used. The bleaching agent (35% hydrogen peroxide) was activated by halogen light; LED (Light Emitting Diode) or LED, followed by laser phototherapy (LPT) (lambda = 780 nm; 3 J/cm(2)). After the bleaching procedures, the animals received an intra-arterial dye injection and one hour later were sacrificed. The teeth were diaphanized and photographed. The amount of blue stain content of each dental pulp was quantified using a computer imaging program. The data was statistically compared (p <= 0.05). The results showed a significant higher (p <= 0.01) dye content in the groups bleached with halogen light, compared with the control, LED and LED plus LPT groups. Thus, tooth bleaching activated by LED or LED plus LPT induces lesser resulted in increased vascular permeability than halogen light.
Resumo:
Aiming to compare the effect of different light sources for dental bleaching on vascular permeability of dental pulps, forty-eight incisors were used. The bleaching agent (35 % hydrogen peroxide) was activated by halogen light; LED (Light Emitting Diode) or LED, followed by laser phototherapy (LPT) (λ = 780 nm; 3 J/cm²). After the bleaching procedures, the animals received an intra-arterial dye injection and one hour later were sacrificed. The teeth were diaphanized and photographed. The amount of blue stain content of each dental pulp was quantified using a computer imaging program. The data was statistically compared (p < 0.05). The results showed a significant higher (p < 0.01) dye content in the groups bleached with halogen light, compared with the control, LED and LED plus LPT groups. Thus, tooth bleaching activated by LED or LED plus LPT induces lesser resulted in increased vascular permeability than halogen light.
Resumo:
Objectives: The objective of this study was to apply low-level laser therapy (LLLT) to accelerate the recovery process of a child patient with Bell's palsy (BP). Design: This was a prospective study. Subject: The subject was a three-year-old boy with a sudden onset of facial asymmetry due to an unknown cause. Materials and methods: The low-level laser source used was a gallium aluminum arsenide semiconductor diode laser device (660nm and 780 nm). No steroids or other medications were given to the child. The laser beam with a 0.04-cm2 spot area, and an aperture with approximately 1-mm diameter, was applied in a continuous emission mode in direct contact with the facial area. The duration of a laser session was between 15 and 30 minutes, depending on the chosen points and the area being treated. Light was applied 10 seconds per point on a maximum number of 80 points, when the entire affected (right) side of the face was irradiated, based on the small laser beam spot size. According to the acupuncture literature, this treatment could also be carried out using 10-20 Chinese acupuncture points, located unilaterally on the face. In this case study, more points were used because the entire affected side of the face (a large area) was irradiated instead of using acupuncture points. Outcome measures: The House-Brackmann grading system was used to monitor the evolution of facial nerve motor function. Photographs were taken after every session, always using the same camera and the same magnitude. The three-year-old boy recovered completely from BP after 11 sessions of LLLT. There were 4 sessions a week for the first 2 weeks, and the total treatment time was 3 weeks. Results: The result of this study was the improvement of facial movement and facial symmetry, with complete reestablishment to normality. Conclusions: LLLT may be an alternative to speed up facial normality in pediatric BP.
Resumo:
Im Rahmen dieser Arbeit wurde eine neue Methode für einen empfindlichen und isotopenselektiven Elementnachweis entwickelt. Unter Einsatz von Laserablation geschieht der Probenaufschluß direkt und mit einer Ortsauflösung von unter 30 m. Hierzu wurde ein hochauflösendes MALDI-TOF-Massenspektrometer, welches üblicherweise für biochemische Fragestellungen eingesetzt wird, mit einem spektroskopischen Aufbau zur resonanten Ionisation von Elementgehalten modifiziert. Die Methode ist somit insbesondere für die Untersuchung von Elementspuren in Festkörperproben mit mikroskopischer Struktur konzipiert. Methodische Entwicklungsarbeiten wurden anhand des Elements Gadolinium durchgeführt. Durch die Verwendung gepulster Farbstofflaser stehen ausreichend hohe Laserfelder zur Verfügung, um unabhängig von Hyperfeinstruktur und Isotopieverschiebung Übergänge aller Isotope im Rahmen des Resonanzionisations-Verfahrens zu sättigen. Darauf konnte eine Isotopenverhältnisanalyse mit einer Genauigkeit im Prozentbereich verwirklicht werden. Verschiedene Anregungsleitern wurden untersucht, und mit elementspezifischen Resonanzüberhöhungen bis zu zwei Größenordnungen über dem nicht-resonant gebildeten Untergrund konnte eine Nachweiseffizienz von über 10-4 (entsprechend sub-fg/g-Niveau) erzielt werden. Dazu wurden Simulationsrechnungen zum atomaren Sättigungsverhalten in starken resonanten Laserfeldern durchgeführt. Erste Anwendungen des Laserablationsverfahrens waren Proben kosmologischer Herkunft. Der physikalische Prozeß der Laserablation bei Metallen wurde unter Hochvakuum-Bedingung systematisch in Abhängigkeit der Laserfluenz untersucht. In der ablatierten Plasmaphase erwies sich der Neutralanteil als besonders geeignet für geschwindigkeitsselektive Laserionisations-Messungen. Eine bimodale Struktur wurde beobachtet, bestehend aus einer thermischen und einer schockwellen-induzierten Komponente. Der ionische Anteil der ablatierten Dampfphase konnte über variable elektrische Feldpulse untersucht werden. Laserablation unter Atmosphärenbedingung wurde an einem beschichteten Messingtarget untersucht. Dabei wurde die Entstehung von permanenten Oberflächenstrukturen beobachtet, welche sich durch Nichtgleichgewichts-Prozesse in der Dampfphase erklären lassen.
Resumo:
A Micro-opto-mechanical systems (MOMS) based technology for the fabrication of ultrasonic probes on optical fiber is presented. Thanks to the high miniaturization level reached, the realization of an ultrasonic system constituted by ultrasonic generating and detecting elements, suitable for minimally invasive applications or Non Destructive Evaluation (NDE) of materials at high resolution, is demonstrated. The ultrasonic generation is realized by irradiating a highly absorbing carbon film patterned on silicon micromachined structures with a nanosecond pulsed laser source, generating a mechanical shock wave due to the thermal expansion of the film induced by optical energy conversion into heat. The short duration of the pulsed laser, together with an appropriate emitter design, assure high frequency and wide band ultrasonic generation. The acoustic detection is also realized on a MOMS device using an interferometric receiver, fabricated with a Fabry-Perot optical cavity realized by means of a patterned SU-8 and two Al metallization levels. In order to detect the ultrasonic waves, the cavity is interrogated by a laser beam measuring the reflected power with a photodiode. Various issues related to the design and fabrication of these acoustic probes are investigated in this thesis. First, theoretical models are developed to characterize the opto-acoustic behavior of the devices and estimate their expected acoustic performances. Tests structures are realized to derive the relevant physical parameters of the materials constituting the MOMS devices and determine the conditions theoretically assuring the best acoustic emission and detection performances. Moreover, by exploiting the models and the theoretical results, prototypes of acoustic probes are designed and their fabrication process developed by means of an extended experimental activity.
Resumo:
The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.
Resumo:
Recent developments in the theory of plasma-based collisionally excited x-ray lasers (XRL) have shown an optimization potential based on the dependence of the absorption region of the pumping laser on its angle of incidence on the plasma. For the experimental proof of this idea, a number of diagnostic schemes were developed, tested, qualified and applied. A high-resolution imaging system, yielding the keV emission profile perpendicular to the target surface, provided positions of the hottest plasma regions, interesting for the benchmarking of plasma simulation codes. The implementation of a highly efficient spectrometer for the plasma emission made it possible to gain information about the abundance of the ionization states necessary for the laser action in the plasma. The intensity distribution and deflection angle of the pump laser beam could be imaged for single XRL shots, giving access to its refraction process within the plasma. During a European collaboration campaign at the Lund Laser Center, Sweden, the optimization of the pumping laser incidence angle resulted in a reduction of the required pumping energy for a Ni-like Mo XRL, which enabled the operation at a repetition rate of 10 Hz. Using the experiences gained there, the XRL performance at the PHELIX facility, GSI Darmstadt with respect to achievable repetition rate and at wavelengths below 20 nm was significantly improved, and also important information for the development towards multi-100 eV plasma XRLs was acquired. Due to the setup improvements achieved during the work for this thesis, the PHELIX XRL system now has reached a degree of reproducibility and versatility which is sufficient for demanding applications like the XRL spectroscopy of heavy ions. In addition, a European research campaign, aiming towards plasma XRLs approaching the water-window (wavelengths below 5 nm) was initiated.