981 resultados para Malmesbury, James Howard Harris, 3d earl of, 1807-1889.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of fluid volumes in cases of pericardial effusion is a necessary procedure during autopsy. With the increased use of virtual autopsy methods in forensics, the need for a quick volume measurement method on computed tomography (CT) data arises, especially since methods such as CT angiography can potentially alter the fluid content in the pericardium. We retrospectively selected 15 cases with hemopericardium, which underwent post-mortem imaging and autopsy. Based on CT data, the pericardial blood volume was estimated using segmentation techniques and downsampling of CT datasets. Additionally, a variety of measures (distances, areas and 3D approximations of the effusion) were examined to find a quick and easy way of estimating the effusion volume. Segmentation of CT images as shown in the present study is a feasible method to measure the pericardial fluid amount accurately. Downsampling of a dataset significantly increases the speed of segmentation without losing too much accuracy. Some of the other methods examined might be used to quickly estimate the severity of the effusion volumes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of warning behaviors offers an additional perspective in threat assessment. Warning behaviors are acts which constitute evidence of increasing or accelerating risk. They are acute, dynamic, and particularly toxic changes in patterns of behavior which may aid in structuring a professional's judgment that an individual of concern now poses a threat - whether the actual target has been identified or not. They require an operational response. A typology of eight warning behaviors for assessing the threat of intended violence is proposed: pathway, fixation, identification, novel aggression, energy burst, leakage, directly communicated threat, and last resort warning behaviors. Previous research on risk factors associated with such warning behaviors is reviewed, and examples of each warning behavior from various intended violence cases are presented, including public figure assassination, adolescent and adult mass murder, corporate celebrity stalking, and both domestic and foreign acts of terrorism. Practical applications and future research into warning behaviors are suggested. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Current pulsatile ventricular assist devices operate asynchronous with the left ventricle in fixed-rate or fill-to-empty modes because electrocardiogram-triggered modes have been abandoned. We hypothesize that varying the ejection delay in the synchronized mode yields more precise control of hemodynamics and left ventricular loading. This allows for a refined management that may be clinically beneficial. METHODS: Eight sheep received a Thoratec paracorporeal ventricular assist device (Thoratec Corp, Pleasanton, Calif) via ventriculo-aortic cannulation. Left ventricular pressure and volume, aortic pressure, pulmonary flow, pump chamber pressure, and pump inflow and outflow were recorded. The pump was driven by a clinical pneumatic drive unit (Medos Medizintechnik AG, Stolberg, Germany) synchronously with the native R-wave. The start of pump ejection was delayed between 0% and 100% of the cardiac period in 10% increments. For each of these delays, hemodynamic variables were compared with baseline data using paired t tests. RESULTS: The location of the minimum of stroke work was observed at a delay of 10% (soon after aortic valve opening), resulting in a median of 43% reduction in stroke work compared with baseline. Maximum stroke work occurred at a median delay of 70% with a median stroke work increase of 11% above baseline. Left ventricular volume unloading expressed by end-diastolic volume was most pronounced for copulsation (delay 0%). CONCLUSIONS: The timing of pump ejection in synchronized mode yields control over left ventricular energetics and can be a method to achieve gradual reloading of a recoverable left ventricle. The traditionally suggested counterpulsation is not optimal in ventriculo-aortic cannulation when maximum unloading is desired.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limitations associated with the visual information provided to surgeons during laparoscopic surgery increases the difficulty of procedures and thus, reduces clinical indications and increases training time. This work presents a novel augmented reality visualization approach that aims to improve visual data supplied for the targeting of non visible anatomical structures in laparoscopic visceral surgery. The approach aims to facilitate the localisation of hidden structures with minimal damage to surrounding structures and with minimal training requirements. The proposed augmented reality visualization approach incorporates endoscopic images overlaid with virtual 3D models of underlying critical structures in addition to targeting and depth information pertaining to targeted structures. Image overlay was achieved through the implementation of camera calibration techniques and integration of the optically tracked endoscope into an existing image guidance system for liver surgery. The approach was validated in accuracy, clinical integration and targeting experiments. Accuracy of the overlay was found to have a mean value of 3.5 mm ± 1.9 mm and 92.7% of targets within a liver phantom were successfully located laparoscopically by non trained subjects using the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cyclical recruitment of atelectasis with each breath is thought to contribute to ventilator-associated lung injury. Extrinsic positive end-expiratory pressure (PEEPe) can maintain alveolar recruitment at end exhalation, but PEEPe depresses cardiac output and increases overdistension. Short exhalation times can also maintain end-expiratory recruitment, but if the mechanism of this recruitment is generation of intrinsic PEEP (PEEPi), there would be little advantage compared with PEEPe. In seven New Zealand White rabbits, we compared recruitment from increased respiratory rate (RR) to recruitment from increased PEEPe after saline lavage. Rabbits were ventilated in pressure control mode with a fraction of inspired O(2) (Fi(O(2))) of 1.0, inspiratory-to-expiratory ratio of 2:1, and plateau pressure of 28 cmH(2)O, and either 1) high RR (24) and low PEEPe (3.5) or 2) low RR (7) and high PEEPe (14). We assessed cyclical lung recruitment with a fast arterial Po(2) probe, and we assessed average recruitment with blood gas data. We measured PEEPi, cardiac output, and mixed venous saturation at each ventilator setting. Recruitment achieved by increased RR and short exhalation time was nearly equivalent to recruitment achieved by increased PEEPe. The short exhalation time at increased RR, however, did not generate PEEPi. Cardiac output was increased on average 13% in the high RR group compared with the high PEEPe group (P < 0.001), and mixed venous saturation was consistently greater in the high RR group (P < 0.001). Prevention of end-expiratory derecruitment without increased end-expiratory pressure suggests that another mechanism, distinct from intrinsic PEEP, plays a role in the dynamic behavior of atelectasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a surfactant-depletion model of lung injury, tidal recruitment of atelectasis and changes in shunt fraction lead to large Pao2 oscillations. We investigated the effect of these oscillations on conventional arterial blood gas (ABG) results using different sampling techniques in ventilated rabbits. In each rabbit, 5 different ventilator settings were studied, 2 before saline lavage injury and 3 after lavage injury. Ventilator settings were altered according to 5 different goals for the amplitude and mean value of brachiocephalic Pao2 oscillations, as guided by a fast responding intraarterial probe. ABG collection was timed to obtain the sample at the peak or trough of the Pao2 oscillations, or over several respiratory cycles. Before lung injury, oscillations were small and sample timing did not influence Pao2. After saline lavage, when Po2 fluctuations measured by the indwelling arterial Po2 probe confirmed tidal recruitment, Pao2 by ABG was significantly higher at peak (295 +/- 130 mm Hg) compared with trough (74 +/- 15 mm Hg) or mean (125 +/- 75 mm Hg). In early, mild lung injury after saline lavage, Pao2 can vary markedly during the respiratory cycle. When atelectasis is recruited with each breath, interpretation of changes in shunt fraction, based on conventional ABG analysis, should account for potentially large respiratory variations in arterial Po2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Current concepts of catheter ablation for atrial fibrillation (AF) commonly use three-dimensional (3D) reconstructions of the left atrium (LA) for orientation, catheter navigation, and ablation line placement. OBJECTIVES: The purpose of this study was to compare the 3D electroanatomic reconstruction (Carto) of the LA, pulmonary veins (PVs), and esophagus with the true anatomy displayed on multislice computed tomography (CT). METHODS: In this prospective study, 100 patients undergoing AF catheter ablation underwent contrast-enhanced spiral CT scan with barium swallow and subsequent multiplanar and 3D reconstructions. Using Carto, circumferential plus linear LA lesions were placed. The esophagus was tagged and integrated into the Carto map. RESULTS: Compared with the true anatomy on CT, the electroanatomic reconstruction accurately displayed the true distance between the lower PVs; the distances between left upper PV, left lower PV, right lower PV, and center of the esophagus; the longitudinal diameter of the encircling line around the funnel of the left PVs; and the length of the mitral isthmus line. Only the distances between the upper PVs, the distance between the right upper PV and esophagus, and the diameter of the right encircling line were significantly shorter on the electroanatomic reconstructions. Furthermore, electroanatomic tagging of the esophagus reliably visualized the true anatomic relationship to the LA. On multiple tagging and repeated CT scans, the LA and esophagus showed a stable anatomic relationship, without relevant sideward shifting of the esophagus. CONCLUSION: Electroanatomic reconstruction can display with high accuracy the true 3D anatomy of the LA and PVs in most of the regions of interest for AF catheter ablation. In addition, Carto was able to visualize the true anatomic relationship between the esophagus and LA. Both structures showed a stable anatomic relationship on Carto and CT without relevant sideward shifting of the esophagus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transdisciplinary research project Virtopsy is dedicated to implementing modern imaging techniques into forensic medicine and pathology in order to augment current examination techniques or even to offer alternative methods. Our project relies on three pillars: three-dimensional (3D) surface scanning for the documentation of body surfaces, and both multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) to visualise the internal body. Three-dimensional surface scanning has delivered remarkable results in the past in the 3D documentation of patterned injuries and of objects of forensic interest as well as whole crime scenes. Imaging of the interior of corpses is performed using MSCT and/or MRI. MRI, in addition, is also well suited to the examination of surviving victims of assault, especially choking, and helps visualise internal injuries not seen at external examination of the victim. Apart from the accuracy and three-dimensionality that conventional documentations lack, these techniques allow for the re-examination of the corpse and the crime scene even decades later, after burial of the corpse and liberation of the crime scene. We believe that this virtual, non-invasive or minimally invasive approach will improve forensic medicine in the near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A patient-specific surface model of the proximal femur plays an important role in planning and supporting various computer-assisted surgical procedures including total hip replacement, hip resurfacing, and osteotomy of the proximal femur. The common approach to derive 3D models of the proximal femur is to use imaging techniques such as computed tomography (CT) or magnetic resonance imaging (MRI). However, the high logistic effort, the extra radiation (CT-imaging), and the large quantity of data to be acquired and processed make them less functional. In this paper, we present an integrated approach using a multi-level point distribution model (ML-PDM) to reconstruct a patient-specific model of the proximal femur from intra-operatively available sparse data. Results of experiments performed on dry cadaveric bones using dozens of 3D points are presented, as well as experiments using a limited number of 2D X-ray images, which demonstrate promising accuracy of the present approach.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis, biological testing, and NMR studies of several analogues of H-c[Cys (3)-Phe (6)-Phe (7)-DTrp (8)-Lys (9)-Thr (10)-Phe (11)-Cys (14)]-OH (ODT-8, a pan-somatostatin analogue, 1) have been performed to assess the effect of changing the stereochemistry and the number of atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (somatostatin numbering) were/was substituted with d-cysteine, norcysteine, D-norcysteine, homocysteine, and/or D-homocysteine. The 3D structure analysis of selected partially selective, bioactive analogues (3, 18, 19, and 21) was carried out in dimethylsulfoxide. Interestingly and not unexpectedly, the 3D structures of these analogues comprised the pharmacophore for which the analogues had the highest binding affinities (i.e., sst 4 in all cases).