997 resultados para MOIETY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energy surface connecting oxazinium olates 9, several possible conformers of ketenes 10 and 11, and the final cyclization products 12, 13 and 14, as well as the isomeric 1,3-oxazine-6-ones 15, ring opening of the latter to N-acylimidoylketenes 16, and subsequent rearrangement of 16 to oxoketenimines 17, azetinones 18, and the cyclization products 19 and 20 are evaluated computationally at the B3LYP/6-31G* and B3LYP/6-311+G*//B3LYP/6-31G* levels. The cyclizations of ketenes to oxazinium olates 9 and oxazines 15 have the characteristics of pseudopericyclic reactions. Plots of the energy vs internal reaction coordinate for the cyclization of transoid acylketenes such as 10 to 9 (via TS1) and 16 to 15 (via TS7) feature two inflection points and indicate that the part of the energy surface above the lower inflection points describe internal rotation of the acyl function in the ketene moiety, and the part below this point describes the cyclization of the cisoid ketene to the planar mesoionic oxazinium olate 9 or oxazinone 15. The 1,3-shifts of the OR group that interconvert ketenes 16 and ketenimines 17 via four-membered cyclic transition states TS8 behave similarly, the first portion (from the ketenimine side) of the activation barrier being due largely to internal rotation of substituents, and the top part being due to the 1,3-shift proper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the crystal structure of HcRed, a far-red fluorescent protein isolated from Heteractis crispa, to 2.1 resolution. HcRed was observed to form a dimer, in contrast to the monomeric form of green fluorescent protein (GFP) or the tetrameric forms of the GFP-like proteins (eqFP611, Rtms5 and DsRed). Unlike the well-defined chromophore conformation observed in GFP and the GFP-like proteins, the HcRed chromophore was observed to be considerably mobile. Within the HcRed structure, the cyclic tripeptide chromophore, Glu64-Tyr65-Gly66, was observed to adopt both a cis coplanar and a tran. non-coplanar conformation. As a result of these two con formations, the hydroxyphenyl moiety of the chromophore makes distinct interactions within the interior of the b-can. These data together with a quantum chemical model of the chromophore, suggest the cis coplanar conformation to be consistent with the fluorescent properties of HcRed, and the trans non-coplanar conformation to be consistent with non-fluorescent properties of hcCP, the chromoprotein parent of HcRed. Moreover, within the GFP-like family, it appears that where conformational freedom is permissible then flexibility in the chromophore conformation is possible. 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptidyl privileged structures have been widely used by many groups to discover biologically active molecules. In this context, privileged substructures are used as hydrophobic anchors, to which peptide functionality is appended to gain specificity. Utilization of this concept has led to the discovery of many different active compounds at a wide range of biological receptors. A synthetic approach to these compounds has been developed on a safety-catch linker that allows rapid preparation of large libraries of these molecules. Importantly, amide bond formation/cleavage through treatment with amines is the final step; it is a linker strategy that allows significant diversification to be easily incorporated, and it only requires the inclusion of an amide bond. In addition, chemistry has been developed that permits the urea moiety to be inserted at the N-terminus of the peptide, allowing the same set of amines (either privileged substructures or amino acid analogues) to be used at both the N- and C-termini of the molecule. To show the robustness of this approach, a small library of peptidyl privileged structures were synthesized, illustrating that large combinatorial libraries can be synthesized using these technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sodium paeoniflorin sulfonate 2 was isolated from processed, but not unprocessed, Paeonia lactiflora roots and characterized by mass spectrometry and NMR spectroscopy. A notable and characteristic downfield shift in the H-1 NMR was observed for the hydrogens to the alkoxysulfonate moiety in 2 and in other model compounds. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new polyketide, spongosoritin A, with a rare vinylagous alpha,beta-unsaturated gamma-lactone moiety was isolated from a Fijian marine sponge, Spongosorites sp., and the structure assigned by detailed spectroscopic analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The preparation and characterization of a series of trinuclear mixed-valence cyano-bridged Co-III-Fe-II-Co-III compounds derived from known dinuclear [{LnCoIII(mu-NC)}Fe-II(CN)(5)](-) complexes (L-n = N-5 or N3S2 n-membered pendant amine macrocycle) are presented. All of the new trinuclear complexes were fully characterized spectroscopically (UV-vis, IR, and C-13 NMR). Complexes exhibiting a trans and cis arrangement of the Co-Fe-Co units around the [Fe(CN)(6)](4-) center are described (i.e., cis/trans-[{LnCoIII(mu-NC)}(2)Fe-II(CN)(4)](2+)), and some of their structures are determined by X-ray crystallography. Electrochemical experiments revealed an expected anodic shift of the Fe-III/II redox potential upon addition of a tripositively charged {(CoLn)-L-III} moiety. The Co-III/II redox potentials do not change greatly from the di- to the trinuclear complex, but rather behave in a fully independent and noncooperative way. In this respect, the energies and extinction coefficients of the MMCT bands agree with the formal existence of two mixed-valence Fe-II-CN-Co-III units per molecule. Solvatochromic experiments also indicated that the MMCT band of these compounds behaves as expected for a class II mixed-valence complex. Nevertheless, its extinction coefficient is dramatically increased upon increasing the solvent donor number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The red fluorescent protein Rtms5H146S displays a transition from blue (absorbance λmax 590 nm) to yellow (absorbance λmax not, vert, similar453 nm) upon titration to low pH. The pKa of the reaction depends on the concentration of halide, offering promise for new expressible halide sensors. The protonation state involved in the low pH form of the chromophore remains, however, ambiguous. We report calculated excitation energies of different protonation states of an RFP chromophore model. These suggest that the relevant titration site is the phenoxy moiety of the chromophore, and the relevant base and conjugate acid are anionic and neutral chromophore species, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ectomycorrhizal (EM) associations facilitate plant nitrogen (N) acquisition, but the contribution of EM associations to tree N nutrition is difficult to ascertain in ecosystems. We studied the abilities of subtropical EM fungi and nutritionally contrasting Eucalyptus species, Eucalyptus grandis W. Hill ex Maiden and Eucalyptus racemosa Cav, to use N sources in axenic and soil cultures, and determined the effect of EM fungi on plant N use and plant N-15 natural abundance (delta N-15). As measured by seedling growth, both species showed little dependence on EM when growing in the N-rich minerotrophic soil from E. grandis rainforest habitat or in axenic culture with inorganic N sources. Both species were heavily dependent on EM associations when growing in the N-poor, organotrophic soil from the E. racemosa wallum habitat or in axenic culture with organic N sources. In axenic culture, EM associations enabled both species to use organic N when supplied with amide-, peptide- or protein-N. Grown axenically with glutamine- or protein-N, delta N-15 of almost all seedlings was lower than source N. The delta N-15 of all studied organisms was higher than the N source when grown on glutathione. This unexpected N-15 enrichment was perhaps due to preferential uptake of an N moiety more N-15-enriched than the bulk molecular average. Grown with ammonium-N, the delta N-15 of non-EM seedlings was mostly higher than that of source N. In contrast, the delta N-15 of EM seedlings was mostly lower than that of source N, except at the lowest ammonium concentration. Discrimination against N-15 was strongest when external ammonium concentration was high. We suggest that ammonium assimilation via EM fungi may be the cause of the often observed distinct foliar delta N-15 of EM and non-EM species, rather than use of different N sources by species with different root specialisations. In support of this notion, delta N-15 of soil and leaves in the rainforest were similar for E. grandis and co-occurring non-mycorrhizal Proteaceae. In contrast, in wallum forest, E. racemosa leaves and roots were strongly N-15-depleted relative to wallum soil and Proteaceae leaves. We conclude that foliar delta N-15 may be used in conjunction with other ecosystem information as a rapid indicator of plant dependency on EM associations for N acquisition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of monolayer films of free base 5,10,15,20-tetrapyridylporphinato (TPyP) and 5,10,15,20-tetrapyridylporphinato zinc(II) (ZnTPyP) on pure water, 0.1 M CdCl2, and 0.1 M CuCl2 subphases was investigated by surface pressure-area isotherms, specular X-ray reflectometry, and polarized total reflection X-ray absorption spectroscopy (PTRXAS). Surface pressure-area isotherms showed significant differences in the area per molecule on pure water compared to that on salt subphases, with a marked increase in the area observed on the salt solutions. This behavior was noted for both forms of the porphyrin and both salts investigated. Modeling of specular X-ray reflectometry data indicated that thinner and more electron dense layers on salt subphases best fit the observed profiles. These data suggest that the porphyrin macrocycle is oriented parallel to the interface on salt subphases and takes on a tilted conformation on pure water. In the case of ZnTPyP, PTRXAS was used to determine the orientation of the porphyrin moiety relative to the surface and to probe the coordination of the central Zn ion. In agreement with the pressure-area isotherms and reflectometry, the PTRXAS data indicate a change in orientation on the salt subphases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore several models for the ground-state proton chain transfer pathway between the green fluorescent protein chromophore and its surrounding protein matrix, with a view to elucidating mechanistic aspects of this process. We have computed quantum chemically the minimum energy pathways (MEPs) in the ground electronic state for one-, two-, and three-proton models of the chain transfer. There are no stable intermediates for our models, indicating that the proton chain transfer is likely to be a single, concerted kinetic step. However, despite the concerted nature of the overall energy profile, a more detailed analysis of the MEPs reveals clear evidence of sequential movement of protons in the chain. The ground-state proton chain transfer does not appear to be driven by the movement of the phenolic proton off the chromophore onto the neutral water bridge. Rather, this proton is the last of the three protons in the chain to move. We find that the first proton movement is from the bridging Ser205 moiety to the accepting Glu222 group. This is followed by the second proton moving from the bridging water to the Ser205for our model this is where the barrier occurs. The phenolic proton on the chromophore is hence the last in the chain to move, transferring to a bridging “water” that already has substantial negative charge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diflavo-protein NADPH cytochrome P450 reductase (CPR) is the key electron transfer partner for all drug metabolizing cytochrome P450 enzymes in humans. The protein delivers, consecutively, two electrons to the heme active site of the P450 in a carefully orchestrated process which ultimately leads to the generation of a high valent oxo-heme moiety. Despite its central role in P450 function, no direct electrochemical investigation of the purified protein has been reported. Here we report the first voltammetric study of purified human CPR where responses from both the FMN and FAD cofactors have been identified using both cyclic and square wave voltammetry. For human CPR redox responses at -2 and -278 mV (with a ratio of 1e(-):3e(-)) vs NHE were seen at pH 7.9 while the potentials for rat CPR at pH 8.0 were -20 and -254 mV. All redox responses exhibit a pH dependence of approximately -59 mV/pH unit consistent with proton coupled electron transfer reactions of equal stoichiometry. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Of the ~1.7 million SINE elements in the human genome, only a tiny number are estimated to be active in transcription by RNA polymerase (Pol) III. Tracing the individual loci from which SINE transcripts originate is complicated by their highly repetitive nature. By exploiting RNA-Seq datasets and unique SINE DNA sequences, we devised a bioinformatic pipeline allowing us to identify Pol III-dependent transcripts of individual SINE elements. When applied to ENCODE transcriptomes of seven human cell lines, this search strategy identified ~1300 Alu loci and ~1100 MIR loci corresponding to detectable transcripts, with ~120 and ~60 respectively Alu and MIR loci expressed in at least three cell lines. In vitro transcription of selected SINEs did not reflect their in vivo expression properties, and required the native 5’-flanking region in addition to internal promoter. We also identified a cluster of expressed AluYa5-derived transcription units, juxtaposed to snaR genes on chromosome 19, formed by a promoter-containing left monomer fused to an Alu-unrelated downstream moiety. Autonomous Pol III transcription was also revealed for SINEs nested within Pol II-transcribed genes raising the possibility of an underlying mechanism for Pol II gene regulation by SINE transcriptional units. Moreover the application of our bioinformatic pipeline to both RNA-seq data of cells subjected to an in vitro pro-oncogenic stimulus and of in vivo matched tumor and non-tumor samples allowed us to detect increased Alu RNA expression as well as the source loci of such deregulation. The ability to investigate SINE transcriptomes at single-locus resolution will facilitate both the identification of novel biologically relevant SINE RNAs and the assessment of SINE expression alteration under pathological conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One hundred sixty-eight multiply substituted 1,4-benzodiazepines have been prepared by a five-step solid-phase combinatorial approach using syn-phase crowns as a solid support and a hydroxymethyl-phenoxy-acetamido linkage (Wang linker). The substituents of the 1,4-benzodiazepine scaffold have been varied in the -3, -5, -7, and 8-positions and the combinatorial library was evaluated in a cholecystokinin (CCK) radioligand binding assay. 3-Alkylated 1,4-benzodiazepines with selectivity towards the CCK-B (CCK2) receptor have been optimized on the lipophilic side chain, the ketone moiety, and the stereochemistry at the 3-position. Various novel 3-alkylated compounds were synthesized and [S]3-propyl-5-phenyl-1,4-benzodiazepin-2-one, [S]NV-A, has shown a CCK-B selective binding at about 180 nM. Fifty-eight compounds of this combinatorial library were purified by preparative TLC and 25 compounds were isolated and fully characterized by TLC, IR, APCI-MS, and 1H/13C-NMR spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SAR of Asperlicin analogues is reported, leading to bioactive 1,4-benzodiazepine-2-ones, which were prepared in a 3 step reaction sequence. The Asperlicin substructure was built up using Tryptophan and readily available 2-amino-acetophenones. This template, containing a 1,4-benzodiazepin-2-one moiety with a 3-indolmethyl side chain, was transformed into mono- and di-substituted 3-indol-3 '-yl-methyl-1,4-benzodi-azepine-2-ones by selective alkylation and acylation reactions. The SAR optimization of the 1,4-benzodiazepine scaffold has included variations at the 5-, 7-, 8-position, at the N1, N-indole nitrogen and the configuration of the C3-position. The most active Asperlicin analogue, having an IC50 of 1.6 microM on the CCKA receptor subtype, was obtained from Tryptophan in only 3 steps in an overall yield of 48%.